Borusyak Kirill, Hull Peter
UC Berkeley and CEPR.
Brown and NBER.
Econometrica. 2023 Nov;91(6):2155-2185. doi: 10.3982/ecta19367.
We develop a new approach to estimating the causal effects of treatments or instruments that combine multiple sources of variation according to a known formula. Examples include treatments capturing spillovers in social or transportation networks and simulated instruments for policy eligibility. We show how exogenous shocks to some, but not all, determinants of such variables can be leveraged while avoiding omitted variables bias. Our solution involves specifying counterfactual shocks that may as well have been realized and adjusting for a summary measure of non-randomness in shock exposure: the average treatment (or instrument) across shock counterfactuals. We use this approach to address bias when estimating employment effects of market access growth from Chinese high-speed rail construction.
我们开发了一种新方法,用于估计根据已知公式组合多种变异来源的治疗或工具的因果效应。示例包括捕捉社会或交通网络溢出效应的治疗方法以及政策资格的模拟工具。我们展示了如何利用对这些变量的部分而非全部决定因素的外生冲击,同时避免遗漏变量偏差。我们的解决方案包括指定可能已经实现的反事实冲击,并针对冲击暴露中的非随机性汇总度量进行调整:跨冲击反事实的平均治疗(或工具)。我们使用这种方法来解决在估计中国高铁建设带来的市场准入增长对就业的影响时出现的偏差。