Suppr超能文献

用于从稀疏频率偏移的CEST图像重建密集Z谱的深度学习。

Deep learning for dense Z-spectra reconstruction from CEST images at sparse frequency offsets.

作者信息

Xiao Gang, Zhang Xiaolei, Tang Hanjing, Huang Weipeng, Chen Yaowen, Zhuang Caiyu, Chen Beibei, Yang Lin, Chen Yue, Yan Gen, Wu Renhua

机构信息

School of Mathematics and Statistics, Hanshan Normal University, Chaozhou, China.

Department of Radiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China.

出版信息

Front Neurosci. 2024 Jan 5;17:1323131. doi: 10.3389/fnins.2023.1323131. eCollection 2023.

Abstract

A direct way to reduce scan time for chemical exchange saturation transfer (CEST)-magnetic resonance imaging (MRI) is to reduce the number of CEST images acquired in experiments. In some scenarios, a sufficient number of CEST images acquired in experiments was needed to estimate parameters for quantitative analysis, and this prolonged the scan time. For that, we aim to develop a general deep-learning framework to reconstruct dense CEST Z-spectra from experimentally acquired images at sparse frequency offsets so as to reduce the number of experimentally acquired CEST images and achieve scan time reduction. The main innovation works are outlined as follows: (1) a general sequence-to-sequence (seq2seq) framework is proposed to reconstruct dense CEST Z-spectra from experimentally acquired images at sparse frequency offsets; (2) we create a training set from wide-ranging simulated Z-spectra instead of experimentally acquired CEST data, overcoming the limitation of the time and labor consumption in manual annotation; (3) a new seq2seq network that is capable of utilizing information from both short-range and long-range is developed to improve reconstruction ability. One of our intentions is to establish a simple and efficient framework, i.e., traditional seq2seq can solve the reconstruction task and obtain satisfactory results. In addition, we propose a new seq2seq network that includes the short- and long-range ability to boost dense CEST Z-spectra reconstruction. The experimental results demonstrate that the considered seq2seq models can accurately reconstruct dense CEST images from experimentally acquired images at 11 frequency offsets so as to reduce the scan time by at least 2/3, and our new seq2seq network contributes to competitive advantage.

摘要

减少化学交换饱和转移(CEST)磁共振成像(MRI)扫描时间的直接方法是减少实验中采集的CEST图像数量。在某些情况下,实验中需要采集足够数量的CEST图像来估计定量分析的参数,这延长了扫描时间。为此,我们旨在开发一个通用的深度学习框架,从稀疏频率偏移下的实验采集图像重建密集的CEST Z谱,以减少实验采集的CEST图像数量并实现扫描时间的减少。主要创新工作如下:(1)提出了一个通用的序列到序列(seq2seq)框架,从稀疏频率偏移下的实验采集图像重建密集的CEST Z谱;(2)我们从广泛的模拟Z谱而不是实验采集的CEST数据创建训练集,克服了手动标注中时间和人力消耗的限制;(3)开发了一种能够利用短程和长程信息的新seq2seq网络,以提高重建能力。我们的意图之一是建立一个简单有效的框架,即传统的seq2seq可以解决重建任务并获得满意的结果。此外,我们提出了一种新的seq2seq网络,它具有短程和长程能力来促进密集的CEST Z谱重建。实验结果表明,所考虑的seq2seq模型可以从11个频率偏移下的实验采集图像准确重建密集的CEST图像,从而将扫描时间减少至少2/3,并且我们的新seq2seq网络具有竞争优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3df0/10796656/7606d43baacd/fnins-17-1323131-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验