Szymborski Tomasz R, Berus Sylwia M, Nowicka Ariadna B, Słowiński Grzegorz, Kamińska Agnieszka
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
Institute for Materials Research and Quantum Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland.
Biomedicines. 2024 Jan 12;12(1):167. doi: 10.3390/biomedicines12010167.
The rapid, low cost, and efficient detection of SARS-CoV-2 virus infection, especially in clinical samples, remains a major challenge. A promising solution to this problem is the combination of a spectroscopic technique: surface-enhanced Raman spectroscopy (SERS) with advanced chemometrics based on machine learning (ML) algorithms. In the present study, we conducted SERS investigations of saliva and nasopharyngeal swabs taken from a cohort of patients (saliva: 175; nasopharyngeal swabs: 114). Obtained SERS spectra were analyzed using a range of classifiers in which random forest (RF) achieved the best results, e.g., for saliva, the precision and recall equals 94.0% and 88.9%, respectively. The results demonstrate that even with a relatively small number of clinical samples, the combination of SERS and shallow machine learning can be used to identify SARS-CoV-2 virus in clinical practice.
快速、低成本且高效地检测严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染,尤其是在临床样本中进行检测,仍然是一项重大挑战。解决这一问题的一个有前景的办法是将一种光谱技术——表面增强拉曼光谱(SERS)与基于机器学习(ML)算法的先进化学计量学相结合。在本研究中,我们对一组患者的唾液和鼻咽拭子进行了SERS研究(唾液:175份;鼻咽拭子:114份)。使用一系列分类器对获得的SERS光谱进行分析,其中随机森林(RF)取得了最佳结果,例如,对于唾液,精确率和召回率分别为94.0%和88.9%。结果表明,即使临床样本数量相对较少,SERS与浅层机器学习的结合也可用于临床实践中识别SARS-CoV-2病毒。