Osnabrück University, Department of Biology/Chemistry, Structural Biology Section, Osnabrück, Germany.
Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany.
Elife. 2024 Jan 23;12:RP90174. doi: 10.7554/eLife.90174.
P-glycoprotein (Pgp) is a prototypical ATP-binding cassette (ABC) transporter of great biological and clinical significance.Pgp confers cancer multidrug resistance and mediates the bioavailability and pharmacokinetics of many drugs (Juliano and Ling, 1976; Ueda et al., 1986; Sharom, 2011). Decades of structural and biochemical studies have provided insights into how Pgp binds diverse compounds (Loo and Clarke, 2000; Loo et al., 2009; Aller et al., 2009; Alam et al., 2019; Nosol et al., 2020; Chufan et al., 2015), but how they are translocated through the membrane has remained elusive. Here, we covalently attached a cyclic substrate to discrete sites of Pgp and determined multiple complex structures in inward- and outward-facing states by cryoEM. In conjunction with molecular dynamics simulations, our structures trace the substrate passage across the membrane and identify conformational changes in transmembrane helix 1 (TM1) as regulators of substrate transport. In mid-transport conformations, TM1 breaks at glycine 72. Mutation of this residue significantly impairs drug transport of Pgp in vivo, corroborating the importance of its regulatory role. Importantly, our data suggest that the cyclic substrate can exit Pgp without the requirement of a wide-open outward-facing conformation, diverting from the common efflux model for Pgp and other ABC exporters. The substrate transport mechanism of Pgp revealed here pinpoints critical targets for future drug discovery studies of this medically relevant system.
P-糖蛋白(Pgp)是一种具有重要生物学和临床意义的典型 ATP 结合盒(ABC)转运蛋白。Pgp 赋予癌症多药耐药性,并调节许多药物的生物利用度和药代动力学(Juliano 和 Ling,1976;Ueda 等人,1986;Sharom,2011)。几十年来的结构和生化研究为了解 Pgp 如何结合多种化合物提供了深入的见解(Loo 和 Clarke,2000;Loo 等人,2009;Aller 等人,2009;Alam 等人,2019;Nosol 等人,2020;Chufan 等人,2015),但它们如何穿过膜仍然难以捉摸。在这里,我们将环状底物共价连接到 Pgp 的离散位点,并通过 cryoEM 确定了内向和外向构象中的多个复合物结构。结合分子动力学模拟,我们的结构追踪了底物穿过膜的过程,并确定了跨膜螺旋 1(TM1)中的构象变化是底物转运的调节剂。在中间转运构象中,TM1 在甘氨酸 72 处断裂。该残基的突变会显著损害 Pgp 在体内的药物转运,证实了其调节作用的重要性。重要的是,我们的数据表明,环状底物可以在不需要宽开外向构象的情况下离开 Pgp,这与 Pgp 和其他 ABC 外排泵的常见外排模型不同。这里揭示的 Pgp 底物转运机制为该医学相关系统的未来药物发现研究指明了关键目标。