文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合气道微生物组和血液蛋白质组学数据,以识别与肺部感染反应相关的多组学网络。

Integrating airway microbiome and blood proteomics data to identify multi-omic networks associated with response to pulmonary infection.

作者信息

Graham Brenton I M, Harris J Kirk, Zemanick Edith T, Wagner Brandie D

机构信息

Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

出版信息

Microbe. 2023 Dec;1. doi: 10.1016/j.microb.2023.100023. Epub 2023 Nov 28.


DOI:10.1016/j.microb.2023.100023
PMID:38264413
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10805068/
Abstract

Host response to airway infections can vary widely. Cystic fibrosis (CF) pulmonary exacerbations provide an opportunity to better understand the interplay between respiratory microbes and the host. This study aimed to investigate the observed heterogeneity in airway infection recovery by analyzing microbiome and host response (i.e., blood proteome) data collected during the onset of 33 pulmonary infection events. We used sparse multiple canonical correlation network (SmCCNet) analysis to integrate these two types of -omics data along with a clinical measure of recovery. Four microbe-protein SmCCNet subnetworks at infection onset were identified that strongly correlate with recovery. Our findings support existing knowledge regarding CF airway infections. Additionally, we discovered novel microbe-protein subnetworks that are associated with recovery and merit further investigation.

摘要

宿主对气道感染的反应差异很大。囊性纤维化(CF)肺部加重为更好地理解呼吸道微生物与宿主之间的相互作用提供了契机。本研究旨在通过分析在33次肺部感染事件发作期间收集的微生物组和宿主反应(即血液蛋白质组)数据,来调查观察到的气道感染恢复的异质性。我们使用稀疏多重典型相关网络(SmCCNet)分析,将这两种类型的组学数据与恢复的临床指标相结合。在感染发作时识别出四个与恢复密切相关的微生物-蛋白质SmCCNet子网。我们的研究结果支持了关于CF气道感染的现有知识。此外,我们发现了与恢复相关的新型微生物-蛋白质子网,值得进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/183d918528c0/nihms-1953944-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/e00cef2058ff/nihms-1953944-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/9d5caf59d433/nihms-1953944-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/4a1181c1d41c/nihms-1953944-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/494301dddc25/nihms-1953944-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/937c713ec9e2/nihms-1953944-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/f27f4bb642a7/nihms-1953944-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/fec25d446128/nihms-1953944-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/183d918528c0/nihms-1953944-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/e00cef2058ff/nihms-1953944-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/9d5caf59d433/nihms-1953944-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/4a1181c1d41c/nihms-1953944-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/494301dddc25/nihms-1953944-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/937c713ec9e2/nihms-1953944-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/f27f4bb642a7/nihms-1953944-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/fec25d446128/nihms-1953944-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/10805068/183d918528c0/nihms-1953944-f0008.jpg

相似文献

[1]
Integrating airway microbiome and blood proteomics data to identify multi-omic networks associated with response to pulmonary infection.

Microbe. 2023-12

[2]
Network Analysis to Identify Multi-Omic Correlations in the Lower Airways of Children With Cystic Fibrosis.

Front Cell Infect Microbiol. 2022

[3]
SmCCNet 2.0: A Comprehensive Tool for Multi-omics Network Inference with Shiny Visualization.

bioRxiv. 2024-4-7

[4]
Smccnet 2.0: a comprehensive tool for multi-omics network inference with shiny visualization.

BMC Bioinformatics. 2024-8-24

[5]
Unsupervised discovery of phenotype-specific multi-omics networks.

Bioinformatics. 2019-11-1

[6]
Identifying Protein-metabolite Networks Associated with COPD Phenotypes.

Metabolites. 2020-3-25

[7]
An integrated metaproteomics workflow for studying host-microbe dynamics in bronchoalveolar lavage samples applied to cystic fibrosis disease.

mSystems. 2024-7-23

[8]
[Chinese experts consensus statement: diagnosis and treatment of cystic fibrosis (2023)].

Zhonghua Jie He He Hu Xi Za Zhi. 2023-4-12

[9]
Rationale and design of a randomized trial of home electronic symptom and lung function monitoring to detect cystic fibrosis pulmonary exacerbations: the early intervention in cystic fibrosis exacerbation (eICE) trial.

Contemp Clin Trials. 2013-9-19

[10]
Host-Microbe Interactions in Airway Disease: toward Disease Mechanisms and Novel Therapeutic Strategies.

mSystems. 2018-3-13

引用本文的文献

[1]
Systematic review of bidirectional interaction between gut microbiome, miRNAs, and human pathologies.

Front Microbiol. 2025-2-5

[2]
Smccnet 2.0: a comprehensive tool for multi-omics network inference with shiny visualization.

BMC Bioinformatics. 2024-8-24

本文引用的文献

[1]
Association of bacterial community types, functional microbial processes and lung disease in cystic fibrosis airways.

ISME J. 2022-4

[2]
Model Systems to Study the Chronic, Polymicrobial Infections in Cystic Fibrosis: Current Approaches and Exploring Future Directions.

mBio. 2021-10-26

[3]
Ecological Succession of Polymicrobial Communities in the Cystic Fibrosis Airways.

mSystems. 2020-12-1

[4]
High-Resolution Longitudinal Dynamics of the Cystic Fibrosis Sputum Microbiome and Metabolome through Antibiotic Therapy.

mSystems. 2020-6-23

[5]
Immunomodulation in Cystic Fibrosis: Why and How?

Int J Mol Sci. 2020-5-8

[6]
Deciphering the Ecology of Cystic Fibrosis Bacterial Communities: Towards Systems-Level Integration.

Trends Mol Med. 2019-8-19

[7]
Unsupervised discovery of phenotype-specific multi-omics networks.

Bioinformatics. 2019-11-1

[8]
Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.

Nat Commun. 2019-4-3

[9]
Higher Interleukin-7 serum concentrations in patients with cystic fibrosis correlate with impaired lung function.

J Cyst Fibros. 2018-10-31

[10]
NF-κB signaling in inflammation.

Signal Transduct Target Ther. 2017

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索