Suppr超能文献

在3D人体模型上模拟心脏信号以开发光电容积脉搏波描记法。

Simulating cardiac signals on 3D human models for photoplethysmography development.

作者信息

Wang Danyi, Chahl Javaan

机构信息

UniSA STEM, University of South Australia, Mawson Lakes, SA, Australia.

Platforms Division, Defence Science and Technology Group, Edinburgh, SA, Australia.

出版信息

Front Robot AI. 2024 Jan 10;10:1266535. doi: 10.3389/frobt.2023.1266535. eCollection 2023.

Abstract

Image-based heart rate estimation technology offers a contactless approach to healthcare monitoring that could improve the lives of millions of people. In order to comprehensively test or optimize image-based heart rate extraction methods, the dataset should contain a large number of factors such as body motion, lighting conditions, and physiological states. However, collecting high-quality datasets with complete parameters is a huge challenge. In this paper, we introduce a bionic human model based on a three-dimensional (3D) representation of the human body. By integrating synthetic cardiac signal and body involuntary motion into the 3D model, five well-known traditional and four deep learning iPPG (imaging photoplethysmography) extraction methods are used to test the rendered videos. To compare with different situations in the real world, four common scenarios (stillness, expression/talking, light source changes, and physical activity) are created on each 3D human. The 3D human can be built with any appearance and different skin tones. A high degree of agreement is achieved between the signals extracted from videos with the synthetic human and videos with a real human-the performance advantages and disadvantages of the selected iPPG methods are consistent for both real and 3D humans. This technology has the capability to generate synthetic humans within various scenarios, utilizing precisely controlled parameters and disturbances. Furthermore, it holds considerable potential for testing and optimizing image-based vital signs methods in challenging situations where real people with reliable ground truth measurements are difficult to obtain, such as in drone rescue.

摘要

基于图像的心率估计技术为医疗监测提供了一种非接触式方法,有望改善数百万人的生活。为了全面测试或优化基于图像的心率提取方法,数据集应包含大量因素,如身体运动、光照条件和生理状态。然而,收集具有完整参数的高质量数据集是一项巨大挑战。在本文中,我们介绍了一种基于人体三维(3D)表示的仿生人体模型。通过将合成心脏信号和身体非自主运动集成到3D模型中,使用五种著名的传统方法和四种深度学习iPPG(成像光电容积脉搏波描记法)提取方法对渲染视频进行测试。为了与现实世界中的不同情况进行比较,在每个3D人体上创建了四种常见场景(静止、表情/说话、光源变化和身体活动)。3D人体可以构建成任何外观和不同肤色。从合成人体视频和真实人体视频中提取的信号之间达成了高度一致——所选iPPG方法的性能优缺点在真实人体和3D人体上都是一致的。这项技术能够在各种场景中生成合成人体,利用精确控制的参数和干扰。此外,在难以获得具有可靠地面真值测量的真实人员的具有挑战性的情况下,如无人机救援中,它在测试和优化基于图像的生命体征方法方面具有相当大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c164/10806157/168598db3b75/frobt-10-1266535-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验