Boccignone Giuseppe, Conte Donatello, Cuculo Vittorio, D'Amelio Alessandro, Grossi Giuliano, Lanzarotti Raffaella, Mortara Edoardo
PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy.
Laboratoire d'Informatique Fondamentale et Appliquée de Tours, Université de Tours, Tours, France.
PeerJ Comput Sci. 2022 Apr 15;8:e929. doi: 10.7717/peerj-cs.929. eCollection 2022.
Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective methods relying on data-driven, model-based and statistical approaches have emerged in the past two decades. They exhibit increasing ability to estimate the blood volume pulse (BVP) signal upon which BPMs (Beats per Minute) can be estimated. Furthermore, learning-based rPPG methods have been recently proposed. The present pyVHR framework represents a multi-stage pipeline covering the whole process for extracting and analyzing HR fluctuations. It is designed for both theoretical studies and practical applications in contexts where wearable sensors are inconvenient to use. Namely, pyVHR supports either the development, assessment and statistical analysis of novel rPPG methods, either traditional or learning-based, or simply the sound comparison of well-established methods on multiple datasets. It is built up on accelerated Python libraries for video and signal processing as well as equipped with parallel/accelerated ad-hoc procedures paving the way to online processing on a GPU. The whole accelerated process can be safely run in real-time for 30 fps HD videos with an average speedup of around 5. This paper is shaped in the form of a gentle tutorial presentation of the framework.
远程光电容积脉搏波描记法(rPPG)旨在从现实环境中的视频自动估计心率(HR)变异性。在过去二十年中出现了许多基于数据驱动、基于模型和统计方法的有效方法。它们在估计血容量脉搏(BVP)信号方面的能力不断提高,而心率(BPM,每分钟心跳数)可基于该信号进行估计。此外,最近还提出了基于学习的rPPG方法。当前的pyVHR框架代表了一个多阶段流程,涵盖了提取和分析心率波动的全过程。它专为在不方便使用可穿戴传感器的情况下进行理论研究和实际应用而设计。也就是说,pyVHR既支持对新型rPPG方法(传统方法或基于学习的方法)的开发、评估和统计分析,也支持在多个数据集上对成熟方法进行合理比较。它基于用于视频和信号处理的加速Python库构建,并配备了并行/加速的特殊程序,为在GPU上进行在线处理铺平了道路。对于30帧每秒的高清视频,整个加速过程可以安全地实时运行,平均加速比约为5。本文以对该框架进行简要教程介绍的形式呈现。