Suppr超能文献

利用多参数术后磁共振成像的基于体素的放射组学特征预测胶质母细胞瘤的局部复发区域

Predicting Regions of Local Recurrence in Glioblastomas Using Voxel-Based Radiomic Features of Multiparametric Postoperative MRI.

作者信息

Cepeda Santiago, Luppino Luigi Tommaso, Pérez-Núñez Angel, Solheim Ole, García-García Sergio, Velasco-Casares María, Karlberg Anna, Eikenes Live, Sarabia Rosario, Arrese Ignacio, Zamora Tomás, Gonzalez Pedro, Jiménez-Roldán Luis, Kuttner Samuel

机构信息

Department of Neurosurgery, Río Hortega University Hospital, 47014 Valladolid, Spain.

Department of Physics and Technology, UiT The Arctic University of Norway, 9019 Tromsø, Norway.

出版信息

Cancers (Basel). 2023 Mar 22;15(6):1894. doi: 10.3390/cancers15061894.

Abstract

The globally accepted surgical strategy in glioblastomas is removing the enhancing tumor. However, the peritumoral region harbors infiltration areas responsible for future tumor recurrence. This study aimed to evaluate a predictive model that identifies areas of future recurrence using a voxel-based radiomics analysis of magnetic resonance imaging (MRI) data. This multi-institutional study included a retrospective analysis of patients diagnosed with glioblastoma who underwent surgery with complete resection of the enhancing tumor. Fifty-five patients met the selection criteria. The study sample was split into training (N = 40) and testing (N = 15) datasets. Follow-up MRI was used for ground truth definition, and postoperative structural multiparametric MRI was used to extract voxel-based radiomic features. Deformable coregistration was used to register the MRI sequences for each patient, followed by segmentation of the peritumoral region in the postoperative scan and the enhancing tumor in the follow-up scan. Peritumoral voxels overlapping with enhancing tumor voxels were labeled as recurrence, while non-overlapping voxels were labeled as nonrecurrence. Voxel-based radiomic features were extracted from the peritumoral region. Four machine learning-based classifiers were trained for recurrence prediction. A region-based evaluation approach was used for model evaluation. The Categorical Boosting (CatBoost) classifier obtained the best performance on the testing dataset with an average area under the curve (AUC) of 0.81 ± 0.09 and an accuracy of 0.84 ± 0.06, using region-based evaluation. There was a clear visual correspondence between predicted and actual recurrence regions. We have developed a method that accurately predicts the region of future tumor recurrence in MRI scans of glioblastoma patients. This could enable the adaptation of surgical and radiotherapy treatment to these areas to potentially prolong the survival of these patients.

摘要

胶质母细胞瘤全球公认的手术策略是切除强化肿瘤。然而,肿瘤周围区域存在导致未来肿瘤复发的浸润区域。本研究旨在评估一种预测模型,该模型使用基于体素的磁共振成像(MRI)数据的放射组学分析来识别未来复发区域。这项多机构研究包括对诊断为胶质母细胞瘤且接受了强化肿瘤全切手术的患者进行回顾性分析。55名患者符合入选标准。研究样本被分为训练数据集(N = 40)和测试数据集(N = 15)。随访MRI用于确定真实情况,术后结构多参数MRI用于提取基于体素的放射组学特征。使用可变形配准对每位患者的MRI序列进行配准,随后在术后扫描中分割肿瘤周围区域,并在随访扫描中分割强化肿瘤。与强化肿瘤体素重叠的肿瘤周围体素被标记为复发,而不重叠的体素被标记为未复发。从肿瘤周围区域提取基于体素的放射组学特征。训练了四个基于机器学习的分类器用于复发预测。使用基于区域的评估方法对模型进行评估。使用基于区域的评估,分类提升(CatBoost)分类器在测试数据集上表现最佳,平均曲线下面积(AUC)为0.81±0.09,准确率为0.84±0.06。预测的复发区域与实际复发区域之间存在明显的视觉对应关系。我们开发了一种方法,可以准确预测胶质母细胞瘤患者MRI扫描中未来肿瘤复发的区域。这可以使手术和放疗治疗适应这些区域,从而有可能延长这些患者的生存期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d05/10047582/d64017e4a664/cancers-15-01894-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验