School of Physics & Information Technology, Shaanxi Normal University, Xi'an, China.
School of Computing, University of Georgia, GA, USA.
Neuroimage. 2024 Feb 15;287:120519. doi: 10.1016/j.neuroimage.2024.120519. Epub 2024 Jan 26.
Functional brain networks (FBNs) are spatial patterns of brain function that play a critical role in understanding human brain function. There are many proposed methods for mapping the spatial patterns of brain function, however they oversimplify the underlying assumptions of brain function and have various limitations such as linearity and independence. Additionally, current methods fail to account for the dynamic nature of FBNs, which limits their effectiveness in accurately characterizing these networks. To address these limitations, we present a novel deep learning and spatial-wise attention based model called Spatial-Temporal Convolutional Attention (STCA) to accurately model dynamic FBNs. Specifically, we train STCA in a self-supervised manner by utilizing a Convolutional Autoencoder to guide the STCA module in assigning higher attention weights to regions of functional activity. To validate the reliability of the results, we evaluate our approach on the HCP-task motor behavior dataset, the experimental results demonstrate that the STCA derived FBNs have higher spatial similarity with the templates and that the spatial similarity between the templates and the FBNs derived by STCA fluctuates with the task design over time, suggesting that STCA can reflect the dynamic changes of brain function, providing a powerful tool to better understand human brain function. Code is available at https://github.com/SNNUBIAI/STCAE.
功能脑网络(FBNs)是大脑功能的空间模式,在理解人类大脑功能方面起着至关重要的作用。有许多被提议的方法可以映射大脑功能的空间模式,然而,它们简化了大脑功能的基本假设,并具有各种限制,如线性和独立性。此外,当前的方法未能考虑到 FBNs 的动态性质,这限制了它们在准确描述这些网络方面的有效性。为了解决这些限制,我们提出了一种新的基于深度学习和空间注意力的模型,称为时空卷积注意力(STCA),以准确地对动态 FBNs 进行建模。具体来说,我们通过使用卷积自动编码器以自监督的方式训练 STCA,以指导 STCA 模块将更高的注意力权重分配给功能活动的区域。为了验证结果的可靠性,我们在 HCP-task 运动行为数据集上评估了我们的方法,实验结果表明,由 STCA 得出的 FBNs 与模板具有更高的空间相似性,并且 STCA 得出的模板与 FBNs 之间的空间相似性随着任务设计随时间而波动,这表明 STCA 可以反映大脑功能的动态变化,为更好地理解人类大脑功能提供了有力的工具。代码可在 https://github.com/SNNUBIAI/STCAE 上获得。