Suppr超能文献

利用代谢工程改造的嗜热栖热放线菌通过糖类和合成气的嗜热生物转化生产异丙醇。

Isopropanol production via the thermophilic bioconversion of sugars and syngas using metabolically engineered Moorella thermoacetica.

作者信息

Kato Junya, Matsuo Takeshi, Takemura Kaisei, Kato Setsu, Fujii Tatsuya, Wada Keisuke, Nakamichi Yusuke, Watanabe Masahiro, Aoi Yoshiteru, Morita Tomotake, Murakami Katsuji, Nakashimada Yutaka

机构信息

Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan.

National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan.

出版信息

Biotechnol Biofuels Bioprod. 2024 Jan 28;17(1):13. doi: 10.1186/s13068-024-02460-1.

Abstract

BACKGROUND

Isopropanol (IPA) is a commodity chemical used as a solvent or raw material for polymeric products, such as plastics. Currently, IPA production depends largely on high-CO-emission petrochemical methods that are not sustainable. Therefore, alternative low-CO emission methods are required. IPA bioproduction using biomass or waste gas is a promising method.

RESULTS

Moorella thermoacetica, a thermophilic acetogenic microorganism, was genetically engineered to produce IPA. A metabolic pathway related to acetone reduction was selected, and acetone conversion to IPA was achieved via the heterologous expression of secondary alcohol dehydrogenase (sadh) in the thermophilic bacterium. sadh-expressing strains were combined with acetone-producing strains, to obtain an IPA-producing strain. The strain produced IPA as a major product using hexose and pentose sugars as substrates (81% mol-IPA/mol-sugar). Furthermore, IPA was produced from CO, whereas acetate was an abundant byproduct. Fermentation using syngas containing both CO and H resulted in higher IPA production at the specific rate of 0.03 h. The supply of reducing power for acetone conversion from the gaseous substrates was examined by supplementing acetone to the culture, and the continuous and rapid conversion of acetone to IPA showed a sufficient supply of NADPH for Sadh.

CONCLUSIONS

The successful engineering of M. thermoacetica resulted in high IPA production from sugars. M. thermoacetica metabolism showed a high capacity for acetone conversion to IPA in the gaseous substrates, indicating acetone production as the bottleneck in IPA production for further improving the strain. This study provides a platform for IPA production via the metabolic engineering of thermophilic acetogens.

摘要

背景

异丙醇(IPA)是一种用作溶剂或聚合物产品(如塑料)原料的商品化学品。目前,IPA的生产在很大程度上依赖于高碳排放的石化方法,这些方法不可持续。因此,需要替代的低碳排放方法。利用生物质或废气进行IPA生物生产是一种很有前景的方法。

结果

嗜热产乙酸微生物热醋穆尔氏菌经过基因工程改造以生产IPA。选择了一条与丙酮还原相关的代谢途径,通过在嗜热细菌中异源表达仲醇脱氢酶(sadh)实现了丙酮向IPA的转化。将表达sadh的菌株与产丙酮菌株组合,获得了一株产IPA的菌株。该菌株以己糖和戊糖为底物,将IPA作为主要产物进行生产(81%摩尔IPA/摩尔糖)。此外,从CO中生产出了IPA,而乙酸是大量的副产物。使用含有CO和H的合成气进行发酵,以0.03 h的比速率实现了更高的IPA产量。通过向培养物中补充丙酮来研究气态底物中丙酮转化所需还原力的供应情况,丙酮持续快速转化为IPA表明为Sadh提供了充足的NADPH。

结论

热醋穆尔氏菌的成功工程改造导致从糖类中高产IPA。热醋穆尔氏菌的代谢在气态底物中显示出将丙酮高效转化为IPA的能力,这表明丙酮生产是IPA生产中的瓶颈,需要进一步改良菌株。本研究为通过嗜热产乙酸菌的代谢工程生产IPA提供了一个平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a70/10823632/eaec03a8c5ba/13068_2024_2460_Fig1_HTML.jpg

相似文献

3
Genetic engineering of a thermophilic acetogen, Y72, to enable acetoin production.
Front Bioeng Biotechnol. 2024 May 15;12:1398467. doi: 10.3389/fbioe.2024.1398467. eCollection 2024.
4
Thermodynamics and economic feasibility of acetone production from syngas using the thermophilic production host .
Biotechnol Biofuels. 2017 Jun 12;10:150. doi: 10.1186/s13068-017-0827-8. eCollection 2017.
5
Autotrophic growth and ethanol production enabled by diverting acetate flux in the metabolically engineered Moorella thermoacetica.
J Biosci Bioeng. 2021 Dec;132(6):569-574. doi: 10.1016/j.jbiosc.2021.08.005. Epub 2021 Sep 10.
6
Homolactic Acid Fermentation by the Genetically Engineered Thermophilic Homoacetogen Moorella thermoacetica ATCC 39073.
Appl Environ Microbiol. 2017 Mar 31;83(8). doi: 10.1128/AEM.00247-17. Print 2017 Apr 15.
7
Enhancing acetone production from H and CO using supplemental electron acceptors in an engineered Moorella thermoacetica.
J Biosci Bioeng. 2023 Jul;136(1):13-19. doi: 10.1016/j.jbiosc.2023.04.001. Epub 2023 Apr 24.
9
Glycerol acts as alternative electron sink during syngas fermentation by thermophilic anaerobe Moorella thermoacetica.
J Biosci Bioeng. 2016 Mar;121(3):268-73. doi: 10.1016/j.jbiosc.2015.07.003. Epub 2015 Oct 9.
10
Engineering Acetobacterium woodii for the production of isopropanol and acetone from carbon dioxide and hydrogen.
Biotechnol J. 2022 May;17(5):e2100515. doi: 10.1002/biot.202100515. Epub 2022 Feb 5.

引用本文的文献

1
Progresses and challenges of engineering thermophilic acetogenic cell factories.
Front Microbiol. 2024 Aug 30;15:1476253. doi: 10.3389/fmicb.2024.1476253. eCollection 2024.
2
Harnessing acetogenic bacteria for one-carbon valorization toward sustainable chemical production.
RSC Chem Biol. 2024 Jul 8;5(9):812-832. doi: 10.1039/d4cb00099d. eCollection 2024 Aug 28.
4
Genetic engineering of a thermophilic acetogen, Y72, to enable acetoin production.
Front Bioeng Biotechnol. 2024 May 15;12:1398467. doi: 10.3389/fbioe.2024.1398467. eCollection 2024.

本文引用的文献

1
Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale.
Nat Biotechnol. 2022 Mar;40(3):335-344. doi: 10.1038/s41587-021-01195-w. Epub 2022 Feb 21.
2
Engineering Acetobacterium woodii for the production of isopropanol and acetone from carbon dioxide and hydrogen.
Biotechnol J. 2022 May;17(5):e2100515. doi: 10.1002/biot.202100515. Epub 2022 Feb 5.
3
Integrating greenhouse gas capture and C1 biotechnology: a key challenge for circular economy.
Microb Biotechnol. 2022 Jan;15(1):228-239. doi: 10.1111/1751-7915.13991. Epub 2021 Dec 14.
5
Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation.
Annu Rev Chem Biomol Eng. 2021 Jun 7;12:439-470. doi: 10.1146/annurev-chembioeng-120120-021122. Epub 2021 Apr 19.
6
Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms.
FEMS Microbiol Rev. 2021 Mar 16;45(2). doi: 10.1093/femsre/fuab008.
7
Acetone-free biobutanol production: Past and recent advances in the Isopropanol-Butanol-Ethanol (IBE) fermentation.
Bioresour Technol. 2019 Sep;287:121425. doi: 10.1016/j.biortech.2019.121425. Epub 2019 May 6.
8
Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas.
Curr Opin Biotechnol. 2018 Apr;50:174-181. doi: 10.1016/j.copbio.2017.12.023. Epub 2018 Feb 3.
9
Enhanced isopropanol-butanol-ethanol mixture production through manipulation of intracellular NAD(P)H level in the recombinant XY16.
Biotechnol Biofuels. 2018 Jan 24;11:12. doi: 10.1186/s13068-018-1024-0. eCollection 2018.
10
Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with C-metabolic flux analysis.
Biotechnol Bioeng. 2017 Dec;114(12):2782-2793. doi: 10.1002/bit.26390. Epub 2017 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验