Suppr超能文献

对嗜热产乙酸菌Y72进行基因工程改造以实现3-羟基丁酮的生产。

Genetic engineering of a thermophilic acetogen, Y72, to enable acetoin production.

作者信息

Kato Junya, Fujii Tatsuya, Kato Setsu, Wada Keisuke, Watanabe Masahiro, Nakamichi Yusuke, Aoi Yoshiteru, Morita Tomotake, Murakami Katsuji, Nakashimada Yutaka

机构信息

Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan.

National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Hiroshima, Japan.

出版信息

Front Bioeng Biotechnol. 2024 May 15;12:1398467. doi: 10.3389/fbioe.2024.1398467. eCollection 2024.

Abstract

Acetogens are among the key microorganisms involved in the bioproduction of commodity chemicals from diverse carbon resources, such as biomass and waste gas. Thermophilic acetogens are particularly attractive because fermentation at higher temperatures offers multiple advantages. However, the main target product is acetic acid. Therefore, it is necessary to reshape metabolism using genetic engineering to produce the desired chemicals with varied carbon lengths. Although such metabolic engineering has been hampered by the difficulty involved in genetic modification, a model thermophilic acetogen, ATCC 39073, is the case with a few successful cases of C2 and C3 compound production, other than acetate. This brief report attempts to expand the product spectrum to include C4 compounds by using strain Y72 of . Strain Y72 is a strain related to the type strain ATCC 39073 and has been reported to have a less stringent restriction-modification system, which could alleviate the cumbersome transformation process. A simplified procedure successfully introduced a key enzyme for acetoin (a C4 chemical) production, and the resulting strains produced acetoin from sugars and gaseous substrates. The culture profile revealed varied acetoin yields depending on the type of substrate and culture conditions, implying the need for further engineering in the future. Thus, the use of a user-friendly chassis could benefit the genetic engineering of .

摘要

产乙酸菌是利用生物质和废气等多种碳源生物生产商品化学品过程中的关键微生物之一。嗜热产乙酸菌尤其具有吸引力,因为在较高温度下发酵具有多种优势。然而,主要目标产物是乙酸。因此,有必要利用基因工程重塑代谢,以生产具有不同碳链长度的所需化学品。尽管这种代谢工程因基因改造的困难而受到阻碍,但嗜热产乙酸菌模式菌株ATCC 39073除了能生产乙酸外,在生产C2和C3化合物方面也有一些成功案例。本简要报告试图通过使用[具体菌株名称未给出]的Y72菌株将产品谱扩展到包括C4化合物。Y72菌株与模式菌株ATCC 39073相关,据报道其限制修饰系统不那么严格,这可以减轻繁琐的转化过程。一个简化程序成功引入了用于生产乙偶姻(一种C4化学品)的关键酶,所得菌株能从糖类和气态底物生产乙偶姻。培养概况显示,乙偶姻产量因底物类型和培养条件而异,这意味着未来需要进一步进行工程改造。因此,使用易于操作的底盘菌株可能有利于[具体菌株名称未给出]的基因工程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8a/11133584/79a0276dd4e8/fbioe-12-1398467-g001.jpg

相似文献

1
Genetic engineering of a thermophilic acetogen, Y72, to enable acetoin production.
Front Bioeng Biotechnol. 2024 May 15;12:1398467. doi: 10.3389/fbioe.2024.1398467. eCollection 2024.
4
Genome-guided analysis of transformation efficiency and carbon dioxide assimilation by Moorella thermoacetica Y72.
Gene. 2014 Feb 10;535(2):150-5. doi: 10.1016/j.gene.2013.11.045. Epub 2013 Dec 6.
5
Homolactic Acid Fermentation by the Genetically Engineered Thermophilic Homoacetogen Moorella thermoacetica ATCC 39073.
Appl Environ Microbiol. 2017 Mar 31;83(8). doi: 10.1128/AEM.00247-17. Print 2017 Apr 15.
6
Glycerol acts as alternative electron sink during syngas fermentation by thermophilic anaerobe Moorella thermoacetica.
J Biosci Bioeng. 2016 Mar;121(3):268-73. doi: 10.1016/j.jbiosc.2015.07.003. Epub 2015 Oct 9.
8
Isolation of thermophilic acetogens and transformation of them with the pyrF and kan(r) genes.
Biosci Biotechnol Biochem. 2013;77(2):301-6. doi: 10.1271/bbb.120720. Epub 2013 Feb 7.
10
Development of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica.
J Biosci Bioeng. 2013 Apr;115(4):347-52. doi: 10.1016/j.jbiosc.2012.10.013. Epub 2012 Nov 22.

本文引用的文献

2
Metabolic engineering for the production of acetoin and 2,3-butanediol at elevated temperature in NCIMB 11955.
Front Bioeng Biotechnol. 2023 May 2;11:1191079. doi: 10.3389/fbioe.2023.1191079. eCollection 2023.
3
Autotrophic growth and ethanol production enabled by diverting acetate flux in the metabolically engineered Moorella thermoacetica.
J Biosci Bioeng. 2021 Dec;132(6):569-574. doi: 10.1016/j.jbiosc.2021.08.005. Epub 2021 Sep 10.
4
Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances.
Biotechnol Adv. 2022 Jan-Feb;54:107783. doi: 10.1016/j.biotechadv.2021.107783. Epub 2021 Jun 29.
6
Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms.
FEMS Microbiol Rev. 2021 Mar 16;45(2). doi: 10.1093/femsre/fuab008.
7
Genome-Based Comparison of All Species of the Genus , and Status of the Species and .
Front Microbiol. 2020 Jan 17;10:3070. doi: 10.3389/fmicb.2019.03070. eCollection 2019.
8
A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate.
Sci Rep. 2017 Jun 28;7(1):4333. doi: 10.1038/s41598-017-04684-8.
9
Thermodynamics and economic feasibility of acetone production from syngas using the thermophilic production host .
Biotechnol Biofuels. 2017 Jun 12;10:150. doi: 10.1186/s13068-017-0827-8. eCollection 2017.
10
Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica.
Bioresour Technol. 2017 Dec;245(Pt B):1393-1399. doi: 10.1016/j.biortech.2017.05.146. Epub 2017 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验