Suppr超能文献

基因工程嗜热同型产乙酸菌嗜热栖热放线菌ATCC 39073的同型乳酸发酵

Homolactic Acid Fermentation by the Genetically Engineered Thermophilic Homoacetogen Moorella thermoacetica ATCC 39073.

作者信息

Iwasaki Yuki, Kita Akihisa, Yoshida Koichiro, Tajima Takahisa, Yano Shinichi, Shou Tomohiro, Saito Masahiro, Kato Junichi, Murakami Katsuji, Nakashimada Yutaka

机构信息

Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.

CREST, JST, Kawaguchi, Saitama, Japan.

出版信息

Appl Environ Microbiol. 2017 Mar 31;83(8). doi: 10.1128/AEM.00247-17. Print 2017 Apr 15.

Abstract

For the efficient production of target metabolites from carbohydrates, syngas, or H-CO by genetically engineered , the control of acetate production (a main metabolite of ) is desired. Although propanediol utilization protein (PduL) was predicted to be a phosphotransacetylase (PTA) involved in acetate production in , this has not been confirmed. Our findings described herein directly demonstrate that two putative PduL proteins, encoded by Moth_0864 () and Moth_1181 (), are involved in acetate formation as PTAs. To disrupt these genes, we replaced each gene with a lactate dehydrogenase gene from ATCC 33223 (). The acetate production from fructose as the sole carbon source by the deletion mutant was not deficient, whereas the disruption of significantly decreased the acetate yield to approximately one-third that of the wild-type strain. The double-deletion (both genes) mutant did not produce acetate but produced only lactate as the end product from fructose. These results suggest that both genes are associated with acetate formation via acetyl-coenzyme A (acetyl-CoA) and that their disruption enables a shift in the homoacetic pathway to the genetically synthesized homolactic pathway via pyruvate. This is the first report, to our knowledge, on the experimental identification of PTA genes in and the shift of the native homoacetic pathway to the genetically synthesized homolactic pathway by their disruption on a sugar platform.

摘要

为了通过基因工程从碳水化合物、合成气或H-CO高效生产目标代谢产物,需要控制乙酸盐的产生(乙酸盐是一种主要代谢产物)。尽管丙二醇利用蛋白(PduL)被预测为参与乙酸盐产生的磷酸转乙酰酶(PTA),但这尚未得到证实。我们在此描述的研究结果直接表明,由Moth_0864()和Moth_1181()编码的两种假定的PduL蛋白作为PTA参与乙酸盐的形成。为了破坏这些基因,我们用来自嗜热栖热菌ATCC 33223()的乳酸脱氢酶基因替换了每个基因。嗜热栖热菌缺失突变体以果糖作为唯一碳源时的乙酸盐产生并不缺乏,而Moth_1181的破坏显著降低了乙酸盐产量,降至野生型菌株的约三分之一。双缺失(两个基因均缺失)突变体不产生乙酸盐,而是仅产生乳酸作为果糖的终产物。这些结果表明,两个基因均通过乙酰辅酶A(acetyl-CoA)与乙酸盐形成相关,并且它们的破坏能够使同型乙酸途径通过丙酮酸转变为基因合成的同型乳酸途径。据我们所知,这是关于嗜热栖热菌中PTA基因的实验鉴定以及通过在糖平台上破坏这些基因使天然同型乙酸途径转变为基因合成的同型乳酸途径的首次报道。

相似文献

引用本文的文献

8
Gas fermentation for commodity chemicals and fuels.气体发酵生产商品化学品和燃料。
Microb Biotechnol. 2017 Sep;10(5):1167-1170. doi: 10.1111/1751-7915.12763. Epub 2017 Jul 11.

本文引用的文献

2
Bacterial synthesis gas (syngas) fermentation.细菌合成气(syngas)发酵。
Environ Technol. 2013 Jul-Aug;34(13-16):1639-51. doi: 10.1080/09593330.2013.827747.
9
The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum).嗜热栖热菌(原热醋梭菌)的全基因组序列
Environ Microbiol. 2008 Oct;10(10):2550-73. doi: 10.1111/j.1462-2920.2008.01679.x. Epub 2008 Jun 9.
10
Old acetogens, new light.古老的产乙酸菌,新的曙光。
Ann N Y Acad Sci. 2008 Mar;1125:100-28. doi: 10.1196/annals.1419.016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验