Suppr超能文献

基于预处理定量超声多参数图像的迁移学习预测乳腺癌新辅助化疗反应。

Transfer learning of pre-treatment quantitative ultrasound multi-parametric images for the prediction of breast cancer response to neoadjuvant chemotherapy.

机构信息

Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada.

Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.

出版信息

Sci Rep. 2024 Jan 29;14(1):2340. doi: 10.1038/s41598-024-52858-y.

Abstract

Locally advanced breast cancer (LABC) is a severe type of cancer with a poor prognosis, despite advancements in therapy. As the disease is often inoperable, current guidelines suggest upfront aggressive neoadjuvant chemotherapy (NAC). Complete pathological response to chemotherapy is linked to improved survival, but conventional clinical assessments like physical exams, mammography, and imaging are limited in detecting early response. Early detection of tissue response can improve complete pathological response and patient survival while reducing exposure to ineffective and potentially harmful treatments. A rapid, cost-effective modality without the need for exogenous contrast agents would be valuable for evaluating neoadjuvant therapy response. Conventional ultrasound provides information about tissue echogenicity, but image comparisons are difficult due to instrument-dependent settings and imaging parameters. Quantitative ultrasound (QUS) overcomes this by using normalized power spectra to calculate quantitative metrics. This study used a novel transfer learning-based approach to predict LABC response to neoadjuvant chemotherapy using QUS imaging at pre-treatment. Using data from 174 patients, QUS parametric images of breast tumors with margins were generated. The ground truth response to therapy for each patient was based on standard clinical and pathological criteria. The Residual Network (ResNet) deep learning architecture was used to extract features from the parametric QUS maps. This was followed by SelectKBest and Synthetic Minority Oversampling (SMOTE) techniques for feature selection and data balancing, respectively. The Support Vector Machine (SVM) algorithm was employed to classify patients into two distinct categories: nonresponders (NR) and responders (RR). Evaluation results on an unseen test set demonstrate that the transfer learning-based approach using spectral slope parametric maps had the best performance in the identification of nonresponders with precision, recall, F1-score, and balanced accuracy of 100, 71, 83, and 86%, respectively. The transfer learning-based approach has many advantages over conventional deep learning methods since it reduces the need for large image datasets for training and shortens the training time. The results of this study demonstrate the potential of transfer learning in predicting LABC response to neoadjuvant chemotherapy before the start of treatment using quantitative ultrasound imaging. Prediction of NAC response before treatment can aid clinicians in customizing ineffectual treatment regimens for individual patients.

摘要

局部晚期乳腺癌(LABC)是一种预后较差的严重癌症,尽管治疗方法有所进步。由于疾病通常无法手术,目前的指南建议采用 upfront aggressive 新辅助化疗(NAC)。对化疗的完全病理反应与改善生存相关,但传统的临床评估,如体格检查、乳房 X 线摄影和影像学,在检测早期反应方面存在局限性。早期检测组织反应可以提高完全病理反应和患者生存,同时减少无效和潜在有害治疗的暴露。一种快速、具有成本效益的方法,无需外源性对比剂,对于评估新辅助治疗反应将非常有价值。传统超声提供了关于组织回声性的信息,但由于仪器依赖性设置和成像参数,图像比较困难。定量超声(QUS)通过使用归一化功率谱来计算定量指标来克服这一问题。本研究使用基于迁移学习的新方法,使用治疗前 QUS 成像预测 LABC 对新辅助化疗的反应。使用 174 名患者的数据,生成了带有边界的乳腺肿瘤的 QUS 参数图像。每位患者的治疗反应的真实情况基于标准的临床和病理标准。使用深度残差网络(ResNet)从参数 QUS 图谱中提取特征。然后分别使用 SelectKBest 和 Synthetic Minority Oversampling(SMOTE)技术进行特征选择和数据平衡。使用支持向量机(SVM)算法将患者分为非反应者(NR)和反应者(RR)两类。在未见过的测试集上的评估结果表明,使用光谱斜率参数图的基于迁移学习的方法在识别非反应者方面表现最佳,其精度、召回率、F1 分数和平衡准确率分别为 100%、71%、83%和 86%。与传统的深度学习方法相比,基于迁移学习的方法具有许多优势,因为它减少了训练所需的大型图像数据集,并缩短了训练时间。本研究的结果表明,在开始治疗之前,使用定量超声成像,基于迁移学习在预测 LABC 对新辅助化疗的反应方面具有很大的潜力。在治疗前预测 NAC 反应可以帮助临床医生为个体患者定制无效的治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d28a/10822849/0f06953a10a9/41598_2024_52858_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验