Suppr超能文献

用于金属光氧化还原介导的芳基卤化物与烷基卤化物交叉亲电偶联的硫化镉量子点

CdS Quantum Dots for Metallaphotoredox-Enabled Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides.

作者信息

Mouat Julianna M, Widness Jonas K, Enny Daniel G, Meidenbauer Mahilet T, Awan Farwa, Krauss Todd D, Weix Daniel J

机构信息

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706 USA.

Materials Science Program, University of Rochester, Rochester, NY 14627 USA.

出版信息

ACS Catal. 2023 Jul 7;13(13):9018-9024. doi: 10.1021/acscatal.3c01984. Epub 2023 Jun 22.

Abstract

Semiconductor quantum dots (QDs) offer many advantages as photocatalysts for synthetic photoredox catalysis, but no reports have explored the use of QDs with nickel catalysts for C-C bond formation. We show here that 5.7 nm CdS QDs are robust photocatalysts for photoredox-promoted cross-electrophile coupling (40 000 TON). These conditions can be utilized on small scale (96-well plate) or adapted to flow. NMR studies show that triethanolamine (TEOA) capped QDs are the active catalyst and that TEOA can displace native phosphonate and carboxylate ligands, demonstrating the importance of QD surface chemistry.

摘要

半导体量子点(QDs)作为用于合成光氧化还原催化的光催化剂具有许多优点,但尚无关于将量子点与镍催化剂用于碳-碳键形成的报道。我们在此表明,5.7纳米的硫化镉量子点是用于光氧化还原促进的交叉亲电偶联反应(40000个催化转化数)的稳健光催化剂。这些条件可用于小规模反应(96孔板)或适用于连续流动反应。核磁共振研究表明,三乙醇胺(TEOA)包覆的量子点是活性催化剂,并且TEOA可以取代天然的膦酸酯和羧酸酯配体,这证明了量子点表面化学的重要性。

相似文献

1
CdS Quantum Dots for Metallaphotoredox-Enabled Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides.
ACS Catal. 2023 Jul 7;13(13):9018-9024. doi: 10.1021/acscatal.3c01984. Epub 2023 Jun 22.
2
Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp)-H Cross-Coupling.
Acc Chem Res. 2021 Feb 16;54(4):988-1000. doi: 10.1021/acs.accounts.0c00694. Epub 2021 Jan 29.
3
Methods and Mechanisms for Cross-Electrophile Coupling of Csp(2) Halides with Alkyl Electrophiles.
Acc Chem Res. 2015 Jun 16;48(6):1767-75. doi: 10.1021/acs.accounts.5b00057. Epub 2015 May 26.
4
A Widely Applicable Dual Catalytic System for Cross-Electrophile Coupling Enabled by Mechanistic Studies.
ACS Catal. 2020 Nov 6;10(21):12642-12656. doi: 10.1021/acscatal.0c03237. Epub 2020 Sep 29.
5
Mechanism and selectivity in nickel-catalyzed cross-electrophile coupling of aryl halides with alkyl halides.
J Am Chem Soc. 2013 Oct 30;135(43):16192-7. doi: 10.1021/ja407589e. Epub 2013 Oct 21.
6
Silyl Radical Activation of Alkyl Halides in Metallaphotoredox Catalysis: A Unique Pathway for Cross-Electrophile Coupling.
J Am Chem Soc. 2016 Jul 6;138(26):8084-7. doi: 10.1021/jacs.6b04818. Epub 2016 Jun 22.
7
Cross-Electrophile Couplings of Activated and Sterically Hindered Halides and Alcohol Derivatives.
Acc Chem Res. 2020 Sep 15;53(9):1833-1845. doi: 10.1021/acs.accounts.0c00291. Epub 2020 Aug 25.
8
Photoredox cross-electrophile coupling in DNA-encoded chemistry.
Biochem Biophys Res Commun. 2020 Dec 3;533(2):201-208. doi: 10.1016/j.bbrc.2020.04.028. Epub 2020 May 12.
9
Orange Light-Driven C(sp)-C(sp) Cross-Coupling via Spin-Forbidden Ir(III) Metallaphotoredox Catalysis.
J Am Chem Soc. 2023 Sep 13;145(36):19925-19931. doi: 10.1021/jacs.3c06285. Epub 2023 Aug 29.
10
Nickel-Catalyzed Electrochemical Cross-Electrophile C(sp)-C(sp) Coupling via a Ni Aryl Amido Intermediate.
Angew Chem Int Ed Engl. 2024 Sep 16;63(38):e202407118. doi: 10.1002/anie.202407118. Epub 2024 Aug 13.

引用本文的文献

2
Cooperative Photoredox Catalysis Under Confinement.
Chemistry. 2025 Apr 9;31(21):e202404699. doi: 10.1002/chem.202404699. Epub 2025 Mar 11.
3
Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis.
Chem Rev. 2024 Dec 11;124(23):13397-13569. doi: 10.1021/acs.chemrev.4c00524. Epub 2024 Nov 26.
5
Interfacial Charge Transfer Regulates Photoredox Catalysis.
ACS Cent Sci. 2024 Feb 26;10(3):529-542. doi: 10.1021/acscentsci.3c01561. eCollection 2024 Mar 27.

本文引用的文献

1
Fine Tuning of Quantum Dots Photocatalysts for the Synthesis of Tropane Alkaloid Skeletons.
Chemistry. 2023 May 16;29(28):e202300303. doi: 10.1002/chem.202300303. Epub 2023 Apr 4.
2
2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration.
Chem Rev. 2023 Apr 12;123(7):3543-3624. doi: 10.1021/acs.chemrev.2c00436. Epub 2023 Feb 1.
4
The Nickel Age in Synthetic Dual Photocatalysis: A Bright Trip Toward Materials Science.
ChemSusChem. 2022 Sep 20;15(18):e202201094. doi: 10.1002/cssc.202201094. Epub 2022 Aug 4.
5
CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes.
J Am Chem Soc. 2022 Jul 13;144(27):12229-12246. doi: 10.1021/jacs.2c03235. Epub 2022 Jun 30.
6
7
Visible-Light Enabled C(s)-C(s) Cross-Electrophile Coupling via Synergistic Halogen-Atom Transfer (XAT) and Nickel Catalysis.
J Org Chem. 2022 Apr 15;87(8):5442-5450. doi: 10.1021/acs.joc.2c00251. Epub 2022 Mar 31.
9
Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis.
Chem Rev. 2022 Jan 26;122(2):2292-2352. doi: 10.1021/acs.chemrev.1c00558. Epub 2021 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验