Xu Yi, Han Kang, Zhou Yongming, Wu Jian, Xie Xin, Xiang Wei
Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
College of Science and Engineering, James Cook University, Cairns, QLD, Australia.
Front Bioeng Biotechnol. 2022 Feb 28;9:811028. doi: 10.3389/fbioe.2021.811028. eCollection 2021.
Diabetic foot ulcers (DFUs) are one of the most common complications of diabetes. Identifying the presence of infection and ischemia in DFU is important for ulcer examination and treatment planning. Recently, the computerized classification of infection and ischaemia of DFU based on deep learning methods has shown promising performance. Most state-of-the-art DFU image classification methods employ deep neural networks, especially convolutional neural networks, to extract discriminative features, and predict class probabilities from the extracted features by fully connected neural networks. In the testing, the prediction depends on an individual input image and trained parameters, where knowledge in the training data is not explicitly utilized. To better utilize the knowledge in the training data, we propose class knowledge banks (CKBs) consisting of trainable units that can effectively extract and represent class knowledge. Each unit in a CKB is used to compute similarity with a representation extracted from an input image. The averaged similarity between units in the CKB and the representation can be regarded as the logit of the considered input. In this way, the prediction depends not only on input images and trained parameters in networks but the class knowledge extracted from the training data and stored in the CKBs. Experimental results show that the proposed method can effectively improve the performance of DFU infection and ischaemia classifications.
糖尿病足溃疡(DFU)是糖尿病最常见的并发症之一。识别DFU中感染和缺血的存在对于溃疡检查和治疗规划很重要。最近,基于深度学习方法的DFU感染和缺血的计算机化分类已显示出良好的性能。大多数最先进的DFU图像分类方法采用深度神经网络,特别是卷积神经网络,来提取判别特征,并通过全连接神经网络从提取的特征中预测类别概率。在测试中,预测取决于单个输入图像和训练参数,其中训练数据中的知识未被明确利用。为了更好地利用训练数据中的知识,我们提出了由可训练单元组成的类别知识库(CKB),这些单元可以有效地提取和表示类别知识。CKB中的每个单元用于计算与从输入图像中提取的表示的相似度。CKB中单元与表示之间的平均相似度可以被视为所考虑输入的对数。通过这种方式,预测不仅取决于网络中的输入图像和训练参数,还取决于从训练数据中提取并存储在CKB中的类别知识。实验结果表明,所提出的方法可以有效提高DFU感染和缺血分类的性能。