Suppr超能文献

ChemSpaceAL:一种应用于蛋白质特异性分子生成的高效主动学习方法。

ChemSpaceAL: An Efficient Active Learning Methodology Applied to Protein-Specific Molecular Generation.

机构信息

Department of Chemistry, Yale University, New Haven, Connecticut 06511-8499, United States.

出版信息

J Chem Inf Model. 2024 Feb 12;64(3):653-665. doi: 10.1021/acs.jcim.3c01456. Epub 2024 Jan 30.

Abstract

The incredible capabilities of generative artificial intelligence models have inevitably led to their application in the domain of drug discovery. Within this domain, the vastness of chemical space motivates the development of more efficient methods for identifying regions with molecules that exhibit desired characteristics. In this work, we present a computationally efficient active learning methodology and demonstrate its applicability to targeted molecular generation. When applied to c-Abl kinase, a protein with FDA-approved small-molecule inhibitors, the model learns to generate molecules similar to the inhibitors without prior knowledge of their existence and even reproduces two of them exactly. We also show that the methodology is effective for a protein without any commercially available small-molecule inhibitors, the HNH domain of the CRISPR-associated protein 9 (Cas9) enzyme. To facilitate implementation and reproducibility, we made all of our software available through the open-source ChemSpaceAL Python package.

摘要

生成式人工智能模型令人难以置信的能力不可避免地促使其在药物发现领域得到应用。在这一领域中,化学空间的广阔性促使人们开发出更有效的方法来识别具有所需特性的分子区域。在这项工作中,我们提出了一种计算效率高的主动学习方法,并展示了其在靶向分子生成中的应用。当应用于具有 FDA 批准的小分子抑制剂的 c-Abl 激酶时,该模型学会了生成与抑制剂相似的分子,而无需事先了解其存在,甚至可以完全重现其中的两种。我们还表明,该方法对于没有任何市售小分子抑制剂的蛋白质(CRISPR 相关蛋白 9(Cas9)酶的 HNH 结构域)也是有效的。为了便于实施和重现,我们通过开源 ChemSpaceAL Python 包提供了我们所有的软件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验