Suppr超能文献

机器学习赋能的光声光谱技术用于无创评估乳腺肿瘤进展:一项临床前研究。

Machine Learning Enabled Photoacoustic Spectroscopy for Noninvasive Assessment of Breast Tumor Progression : A Preclinical Study.

机构信息

Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India.

Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India.

出版信息

ACS Sens. 2024 Feb 23;9(2):589-601. doi: 10.1021/acssensors.3c01085. Epub 2024 Jan 30.

Abstract

Breast cancer is a dreaded disease affecting women the most in cancer-related deaths over other cancers. However, early diagnosis of the disease can help increase survival rates. The existing breast cancer diagnosis tools do not support the early diagnosis of the disease. Therefore, there is a great need to develop early diagnostic tools for this cancer. Photoacoustic spectroscopy (PAS), being very sensitive to biochemical changes, can be relied upon for its application in detecting breast tumors . With this motivation, in the current study, an aseptic chamber integrated photoacoustic (PA) probe was designed and developed to monitor breast tumor progression , established in nude mice. The device served the dual purpose of transporting tumor-bearing animals to the laboratory from the animal house and performing PA experiments in the same chamber, maintaining sterility. In the current study, breast tumor was induced in the nude mice by MCF-7 cells injection and the corresponding PA spectra at different time points (day 0, 5, 10, 15, and 20) of tumor progression in the same animals. The recorded photoacoustic spectra were subsequently preprocessed, wavelet-transformed, and subjected to filter-based feature selection algorithm. The selected top 20 features, by minimum redundancy maximum relevance (mRMR) algorithm, were then used to build an input feature matrix for machine learning (ML)-based classification of the data. The performance of classification models demonstrated 100% specificity, whereas the sensitivity of 95, 100, 92.5, and 85% for the time points, day 5, 10, 15, and 20, respectively. These results suggest the potential of PA signal-based classification of breast tumor progression in a preclinical model. The PA signal contains information on the biochemical changes associated with disease progression, emphasizing its translational strength toward early disease diagnosis.

摘要

乳腺癌是一种令人恐惧的疾病,在与癌症相关的死亡中,女性的死亡率高于其他癌症。然而,早期诊断疾病可以帮助提高生存率。现有的乳腺癌诊断工具不能支持早期诊断疾病。因此,非常需要开发这种癌症的早期诊断工具。光声光谱(PAS)对生化变化非常敏感,因此可以依靠它来检测乳腺癌。基于这一动机,在当前的研究中,设计并开发了一种无菌室集成光声(PA)探头,用于监测裸鼠中建立的乳腺癌肿瘤进展。该设备具有将携带肿瘤的动物从动物房运送到实验室和在同一腔室中进行 PA 实验的双重目的,保持无菌状态。在当前的研究中,通过 MCF-7 细胞注射在裸鼠中诱导乳腺癌,并在同一动物中不同时间点(第 0、5、10、15 和 20 天)的肿瘤进展过程中记录相应的 PA 光谱。随后对记录的光声光谱进行预处理、小波变换,并应用基于滤波器的特征选择算法。然后,通过最小冗余最大相关性(mRMR)算法选择前 20 个特征,用于构建基于机器学习(ML)的分类数据的输入特征矩阵。分类模型的性能表现出 100%的特异性,而对第 5、10、15 和 20 天的时间点的敏感性分别为 95%、100%、92.5%和 85%。这些结果表明,基于 PA 信号的乳腺癌肿瘤进展的分类在临床前模型中具有潜力。PA 信号包含与疾病进展相关的生化变化信息,强调了其向早期疾病诊断转化的强大实力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b99e/10897932/47473d345b8a/se3c01085_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验