Suppr超能文献

在一个具有生物现实性的、关于小鼠海马 CA3 区的尖峰神经网络模型中,细胞集合的形成和检索。

Formation and retrieval of cell assemblies in a biologically realistic spiking neural network model of area CA3 in the mouse hippocampus.

机构信息

Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason University, Fairfax, VA, USA.

Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, VA, USA.

出版信息

J Comput Neurosci. 2024 Nov;52(4):303-321. doi: 10.1007/s10827-024-00881-3. Epub 2024 Sep 17.

Abstract

The hippocampal formation is critical for episodic memory, with area Cornu Ammonis 3 (CA3) a necessary substrate for auto-associative pattern completion. Recent theoretical and experimental evidence suggests that the formation and retrieval of cell assemblies enable these functions. Yet, how cell assemblies are formed and retrieved in a full-scale spiking neural network (SNN) of CA3 that incorporates the observed diversity of neurons and connections within this circuit is not well understood. Here, we demonstrate that a data-driven SNN model quantitatively reflecting the neuron type-specific population sizes, intrinsic electrophysiology, connectivity statistics, synaptic signaling, and long-term plasticity of the mouse CA3 is capable of robust auto-association and pattern completion via cell assemblies. Our results show that a broad range of assembly sizes could successfully and systematically retrieve patterns from heavily incomplete or corrupted cues after a limited number of presentations. Furthermore, performance was robust with respect to partial overlap of assemblies through shared cells, substantially enhancing memory capacity. These novel findings provide computational evidence that the specific biological properties of the CA3 circuit produce an effective neural substrate for associative learning in the mammalian brain.

摘要

海马结构对于情景记忆至关重要,其中齿状回 CA3 区是自动联想模式完成的必要基质。最近的理论和实验证据表明,细胞集合的形成和检索能够实现这些功能。然而,在包含该回路中观察到的神经元和连接多样性的 CA3 的全规模尖峰神经网络 (SNN) 中,细胞集合是如何形成和检索的,目前还不是很清楚。在这里,我们证明了一个数据驱动的 SNN 模型,它定量地反映了神经元类型特异性的群体大小、内在电生理学、连接统计、突触信号传递和小鼠 CA3 的长期可塑性,能够通过细胞集合实现强大的自动联想和模式完成。我们的结果表明,在经过有限数量的呈现后,广泛的集合大小可以成功且系统地从严重不完整或损坏的线索中检索模式。此外,性能对通过共享细胞的集合部分重叠具有鲁棒性,极大地提高了记忆容量。这些新发现为计算证据提供了支持,即 CA3 回路的特定生物学特性产生了哺乳动物大脑中联想学习的有效神经基质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/11470887/127e204d5e49/10827_2024_881_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验