文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

运用初级视觉皮层的生物物理模拟揭示电流汇和源的电路机制。

Uncovering circuit mechanisms of current sinks and sources with biophysical simulations of primary visual cortex.

机构信息

Department of Informatics, University of Oslo, Oslo, Norway.

Department of Physics, University of Oslo, Oslo, Norway.

出版信息

Elife. 2023 Jul 24;12:e87169. doi: 10.7554/eLife.87169.


DOI:10.7554/eLife.87169
PMID:37486105
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10393295/
Abstract

Local field potential (LFP) recordings reflect the dynamics of the current source density (CSD) in brain tissue. The synaptic, cellular, and circuit contributions to current sinks and sources are ill-understood. We investigated these in mouse primary visual cortex using public Neuropixels recordings and a detailed circuit model based on simulating the Hodgkin-Huxley dynamics of >50,000 neurons belonging to 17 cell types. The model simultaneously captured spiking and CSD responses and demonstrated a two-way dissociation: firing rates are altered with minor effects on the CSD pattern by adjusting synaptic weights, and CSD is altered with minor effects on firing rates by adjusting synaptic placement on the dendrites. We describe how thalamocortical inputs and recurrent connections sculpt specific sinks and sources early in the visual response, whereas cortical feedback crucially alters them in later stages. These results establish quantitative links between macroscopic brain measurements (LFP/CSD) and microscopic biophysics-based understanding of neuron dynamics and show that CSD analysis provides powerful constraints for modeling beyond those from considering spikes.

摘要

局部场电位 (LFP) 记录反映了脑组织中电流密度 (CSD) 的动态。突触、细胞和电路对电流汇和源的贡献还不太清楚。我们使用公共的 Neuropixels 记录和基于模拟超过 50000 个神经元的 Hodgkin-Huxley 动力学的详细电路模型,在小鼠初级视觉皮层中研究了这些。该模型同时捕获了尖峰和 CSD 响应,并证明了一种双向分离:通过调整突触权重, firing rates 会发生变化,而 CSD 模式的变化很小,通过调整突触在树突上的位置,CSD 会发生变化,而 firing rates 的变化很小。我们描述了丘脑皮层输入和递归连接如何在视觉反应的早期塑造特定的汇和源,而皮层反馈在后期则极大地改变了它们。这些结果在宏观脑测量(LFP/CSD)和基于神经元动力学的微观生物物理理解之间建立了定量联系,并表明 CSD 分析为建模提供了强大的约束,超出了考虑尖峰的约束。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/d102f672d072/elife-87169-sa2-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/522cbe31ddf3/elife-87169-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/8cfb255ff8bc/elife-87169-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/51c2fe5abee6/elife-87169-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/54bfb3e8eac9/elife-87169-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/86e72f98306c/elife-87169-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/08c403716f27/elife-87169-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/07c0d3288930/elife-87169-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/2b55257b7f71/elife-87169-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/c5536e914dd5/elife-87169-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/b58d7058d113/elife-87169-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/95d0e4282144/elife-87169-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/0b3da57398b7/elife-87169-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/158446c47a60/elife-87169-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/a73bbd131d20/elife-87169-fig5-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/8d08ddd51c94/elife-87169-fig5-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/c1cc384bacd1/elife-87169-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/59e602c32442/elife-87169-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/3260e03e6e20/elife-87169-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/9628750480f9/elife-87169-fig6-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/53fba73fa6e3/elife-87169-fig6-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/1ab8978f535c/elife-87169-fig6-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/f997538c2369/elife-87169-fig6-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/71bc6154eb92/elife-87169-fig6-figsupp7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/3e5903e1d0f2/elife-87169-fig6-figsupp8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/170d2addd9f8/elife-87169-fig6-figsupp9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/88c0660a87a1/elife-87169-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/8db8bb2715c2/elife-87169-fig7-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/393ce90b0224/elife-87169-fig7-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/a2426a5b2f46/elife-87169-fig7-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/5009bbe1acdc/elife-87169-app1-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/d102f672d072/elife-87169-sa2-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/522cbe31ddf3/elife-87169-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/8cfb255ff8bc/elife-87169-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/51c2fe5abee6/elife-87169-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/54bfb3e8eac9/elife-87169-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/86e72f98306c/elife-87169-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/08c403716f27/elife-87169-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/07c0d3288930/elife-87169-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/2b55257b7f71/elife-87169-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/c5536e914dd5/elife-87169-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/b58d7058d113/elife-87169-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/95d0e4282144/elife-87169-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/0b3da57398b7/elife-87169-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/158446c47a60/elife-87169-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/a73bbd131d20/elife-87169-fig5-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/8d08ddd51c94/elife-87169-fig5-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/c1cc384bacd1/elife-87169-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/59e602c32442/elife-87169-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/3260e03e6e20/elife-87169-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/9628750480f9/elife-87169-fig6-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/53fba73fa6e3/elife-87169-fig6-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/1ab8978f535c/elife-87169-fig6-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/f997538c2369/elife-87169-fig6-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/71bc6154eb92/elife-87169-fig6-figsupp7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/3e5903e1d0f2/elife-87169-fig6-figsupp8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/170d2addd9f8/elife-87169-fig6-figsupp9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/88c0660a87a1/elife-87169-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/8db8bb2715c2/elife-87169-fig7-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/393ce90b0224/elife-87169-fig7-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/a2426a5b2f46/elife-87169-fig7-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/5009bbe1acdc/elife-87169-app1-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/10393295/d102f672d072/elife-87169-sa2-fig1.jpg

相似文献

[1]
Uncovering circuit mechanisms of current sinks and sources with biophysical simulations of primary visual cortex.

Elife. 2023-7-24

[2]
Uncovering population contributions to the extracellular potential in the mouse visual system using Laminar Population Analysis.

bioRxiv. 2024-1-16

[3]
h-Type Membrane Current Shapes the Local Field Potential from Populations of Pyramidal Neurons.

J Neurosci. 2018-6-6

[4]
Large-Scale Mechanistic Models of Brain Circuits with Biophysically and Morphologically Detailed Neurons.

J Neurosci. 2024-10-2

[5]
Single-Cell Membrane Potential Fluctuations Evince Network Scale-Freeness and Quasicriticality.

J Neurosci. 2019-4-5

[6]
Coupling of synaptic inputs to local cortical activity differs among neurons and adapts after stimulus onset.

J Neurophysiol. 2017-12-1

[7]
A Minimal Biophysical Model of Neocortical Pyramidal Cells: Implications for Frontal Cortex Microcircuitry and Field Potential Generation.

J Neurosci. 2020-10-28

[8]
Interaction of feedforward and feedback streams in visual cortex in a firing-rate model of columnar computations.

Neural Netw. 2014-6

[9]
An analysis of current source density profiles activated by local stimulation in the mouse auditory cortex in vitro.

Brain Res. 2017-3-15

[10]
Laminar population analysis: estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex.

J Neurophysiol. 2007-3

引用本文的文献

[1]
Layers of the monkey visual cortex are selectively modulated during electrical stimulation.

PLoS Biol. 2025-7-7

[2]
BlueRecording: A pipeline for the efficient calculation of extracellular recordings in large-scale neural circuit models.

PLoS Comput Biol. 2025-5-23

[3]
A Python toolbox for neural circuit parameter inference.

NPJ Syst Biol Appl. 2025-5-9

[4]
Single Neuron Contributions to the Auditory Brainstem EEG.

J Neurosci. 2025-5-28

[5]
On the validity of electric brain signal predictions based on population firing rates.

PLoS Comput Biol. 2025-4-14

[6]
Cortical dynamics of neural-connectivity fields.

J Comput Neurosci. 2025-4-10

[7]
Integrating multimodal data to understand cortical circuit architecture and function.

Nat Neurosci. 2025-4

[8]
Predictive routing emerges from self-supervised stochastic neural plasticity.

bioRxiv. 2025-2-4

[9]
Uncovering population contributions to the extracellular potential in the mouse visual system using Laminar Population Analysis.

PLoS Comput Biol. 2024-12-12

[10]
Reconciliation of weak pairwise spike-train correlations and highly coherent local field potentials across space.

Cereb Cortex. 2024-10-3

本文引用的文献

[1]
Distinct organization of two cortico-cortical feedback pathways.

Nat Commun. 2022-10-27

[2]
Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations.

Neuroscience. 2022-5-1

[3]
Classification of Cortical Neurons by Spike Shape and the Identification of Pyramidal Neurons.

Cereb Cortex. 2021-10-1

[4]
Survey of spiking in the mouse visual system reveals functional hierarchy.

Nature. 2021-4

[5]
Brain Modeling ToolKit: An open source software suite for multiscale modeling of brain circuits.

PLoS Comput Biol. 2020-11

[6]
Cellular Mechanisms of Conscious Processing.

Trends Cogn Sci. 2020-10

[7]
Dissociation of broadband high-frequency activity and neuronal firing in the neocortex.

Sci Adv. 2020-8

[8]
A kernel-based method to calculate local field potentials from networks of spiking neurons.

J Neurosci Methods. 2020-10-1

[9]
Feedback generates a second receptive field in neurons of the visual cortex.

Nature. 2020-5-20

[10]
Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex.

Neuron. 2020-3-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索