Suppr超能文献

新型冠状病毒肺炎的尸检胸部计算机断层扫描:一种微创尸检方法

Postmortem chest computed tomography in COVID-19: A minimally invasive autopsy method.

作者信息

Savoia Paulo, Valente Yamada Sawamura Marcio, de Almeida Monteiro Renata Aparecida, Nunes Duarte-Neto Amaro, Morais Martin Maria da Graça, Dolhnikoff Marisa, Mauad Thais, Nascimento Saldiva Paulo Hilário, da Costa Leite Claudia, Ferraz da Silva Luiz Fernando, Cardoso Ellison Fernando

机构信息

Department of Radiology, University of Sao Paulo School of Medicine, Institute of Radiology, Rua Doutor Ovidio Pires de Campos, 75, 05403-010, Cerqueira Cesar, São Paulo, SP, Brazil.

Department of Pathology, University of Sao Paulo School of Medicine, Av. Dr. Arnaldo, 455, sala 1155, 01246-903, Cerqueira Cesar, São Paulo, SP, Brazil.

出版信息

Eur J Radiol Open. 2024 Jan 13;12:100546. doi: 10.1016/j.ejro.2024.100546. eCollection 2024 Jun.

Abstract

OBJECTIVES

Performing autopsies in a pandemic scenario is challenging, as the need to understand pathophysiology must be balanced with the contamination risk. A minimally invasive autopsy might be a solution. We present a model that combines radiology and pathology to evaluate postmortem CT lung findings and their correlation with histopathology.

METHODS

Twenty-nine patients with fatal COVID-19 underwent postmortem chest CT, and multiple lung tissue samples were collected. The chest CT scans were analyzed and quantified according to lung involvement in five categories: normal, ground-glass opacities, crazy-paving, small consolidations, and large or lobar consolidations. The lung tissue samples were examined and quantified in three categories: normal lung, exudative diffuse alveolar damage (DAD), and fibroproliferative DAD. A linear index was used to estimate the global severity of involvement by CT and histopathological analysis.

RESULTS

There was a positive correlation between patient mean CT and histopathological severity score indexes - Pearson correlation coefficient (R) = 0.66 (p = 0.0078). When analyzing the mean lung involvement percentage of each finding, positive correlations were found between the normal lung percentage between postmortem CT and histopathology (R=0.65, p = 0.0082), as well as between ground-glass opacities in postmortem CT and normal lungs in histopathology (R=0.65, p = 0.0086), but negative correlations were observed between ground-glass opacities extension and exudative diffuse alveolar damage in histological slides (R=-0.68, p = 0.005). Additionally, it was found is a trend toward a decrease in the percentage of normal lung tissue on the histological slides as the percentage of consolidations in postmortem CT scans increased (R =-0.51, p = 0.055). The analysis of the other correlations between the percentage of each finding did not show any significant correlation or correlation trends (p ≥ 0.10).

CONCLUSIONS

A minimally invasive autopsy is valid. As the severity of involvement is increased in CT, more advanced disease is seen on histopathology. However, we cannot state that one specific radiological category represents a specific pathological correspondent. Ground-glass opacities, in the postmortem stage, must be interpreted with caution, as expiratory lungs may overestimate disease.

摘要

目的

在大流行情况下进行尸检具有挑战性,因为理解病理生理学的需求必须与污染风险相平衡。微创尸检可能是一种解决方案。我们提出了一种结合放射学和病理学的模型,以评估死后胸部CT肺部表现及其与组织病理学的相关性。

方法

对29例死于COVID-19的患者进行了死后胸部CT检查,并采集了多个肺组织样本。根据肺部受累情况将胸部CT扫描分为五类进行分析和量化:正常、磨玻璃影、铺路石征、小实变和大或大叶实变。对肺组织样本进行检查并分为三类进行量化:正常肺、渗出性弥漫性肺泡损伤(DAD)和纤维增生性DAD。使用线性指数通过CT和组织病理学分析估计受累的总体严重程度。

结果

患者平均CT严重程度评分指数与组织病理学严重程度评分指数之间存在正相关——Pearson相关系数(R)=0.66(p=0.0078)。分析每种表现的平均肺受累百分比时,发现死后CT与组织病理学中正常肺百分比之间存在正相关(R=0.65,p=0.0082),死后CT中的磨玻璃影与组织病理学中的正常肺之间也存在正相关(R=0.65,p=0.0086),但组织学切片中磨玻璃影范围与渗出性弥漫性肺泡损伤之间存在负相关(R=-0.68,p=0.005)。此外,发现随着死后CT扫描实变百分比的增加,组织学切片中正常肺组织百分比有下降趋势(R=-0.51,p=0.055)。对每种表现百分比之间的其他相关性分析未显示任何显著相关性或相关趋势(p≥0.10)。

结论

微创尸检是有效的。随着CT中受累严重程度增加,组织病理学上可见更严重的疾病。然而,我们不能说某一特定的放射学类别代表特定的病理学对应类型。在死后阶段,磨玻璃影必须谨慎解读,因为呼气时的肺部情况可能高估疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d967/10825618/6afa2c6043d4/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验