Suppr超能文献

基于蚁群优化的人工神经自适应张量流增强物联网中的网络安全。

Enhancement of cyber security in IoT based on ant colony optimized artificial neural adaptive Tensor flow.

作者信息

Sadu Vijaya Bhaskar, Abhishek Kumar, Al-Omari Omaia Mohammed, Nallola Sandhya Rani, Sharma Rajeev Kumar, Khan Mohammad Shadab

机构信息

Department of Mechanical Engineering, Jawaharlal Nehru Technological University, Kakinada, India.

Mathematics Division SASL, VIT Bhopal University, Sehore, India.

出版信息

Network. 2025 Aug;36(3):598-614. doi: 10.1080/0954898X.2024.2336058. Epub 2024 Jul 15.

Abstract

The Internet of Things (IoT) is a network that connects various hardware, software, data storage, and applications. These interconnected devices provide services to businesses and can potentially serve as entry points for cyber-attacks. The privacy of IoT devices is increasingly vulnerable, particularly to threats like viruses and illegal software distribution lead to the theft of critical information. Ant Colony-Optimized Artificial Neural-Adaptive Tensorflow (ACO-ANT) technique is proposed to detect malicious software illicitly disseminated through the IoT. To emphasize the significance of each token in source duplicate data, the noise data undergoes processing using tokenization and weighted attribute techniques. Deep learning (DL) methods are then employed to identify source code duplication. Also the Multi-Objective Recurrent Neural Network (M-RNN) is used to identify suspicious activities within an IoT environment. The performance of proposed technique is examined using Loss, accuracy, F measure, precision to identify its efficiency. The experimental outcomes demonstrate that the proposed method ACO-ANT on Malimg dataset provides 12.35%, 14.75%, 11.84% higher precision and 10.95%, 15.78%, 13.89% higher f-measure compared to the existing methods. Further, leveraging block chain for malware detection is a promising direction for future research the fact that could enhance the security of IoT and identify malware threats.

摘要

物联网(IoT)是一个连接各种硬件、软件、数据存储和应用程序的网络。这些相互连接的设备为企业提供服务,并且有可能成为网络攻击的切入点。物联网设备的隐私越来越容易受到侵犯,尤其是像病毒和非法软件分发等威胁会导致关键信息被盗。本文提出了蚁群优化人工神经自适应张量流(ACO-ANT)技术来检测通过物联网非法传播的恶意软件。为了强调源重复数据中每个令牌的重要性,使用令牌化和加权属性技术对噪声数据进行处理。然后采用深度学习(DL)方法来识别源代码重复。此外,多目标递归神经网络(M-RNN)用于识别物联网环境中的可疑活动。使用损失、准确率、F值、精确率来检验所提技术的性能,以确定其效率。实验结果表明,与现有方法相比,所提的ACO-ANT方法在Malimg数据集上的精确率分别提高了12.35%、14.75%、11.84%,F值分别提高了10.95%、15.78%、13.89%。此外,利用区块链进行恶意软件检测是未来研究的一个有前景的方向,这一事实可以增强物联网的安全性并识别恶意软件威胁。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验