Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA.
Redox Biol. 2024 Apr;70:103049. doi: 10.1016/j.redox.2024.103049. Epub 2024 Jan 20.
Once thought of in terms of bioenergetics, mitochondria are now widely accepted as both the orchestrator of cellular health and the gatekeeper of cell death. The pulmonary disease field has performed extensive efforts to explore the role of mitochondria in regulating inflammation, cellular metabolism, apoptosis, and oxidative stress. However, a critical component of these processes needs to be more studied: mitochondrial network dynamics. Mitochondria morphologically change in response to their environment to regulate these processes through fusion, fission, and mitophagy. This allows mitochondria to adapt their function to respond to cellular requirements, a critical component in maintaining cellular homeostasis. For that reason, mitochondrial network dynamics can be considered a bridge that brings multiple cellular processes together, revealing a potential pathway for therapeutic intervention. In this review, we discuss the critical modulators of mitochondrial dynamics and how they are affected in pulmonary diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), and pulmonary arterial hypertension (PAH). A dysregulated mitochondrial network plays a crucial role in lung disease pathobiology, and aberrant fission/fusion/mitophagy pathways are druggable processes that warrant further exploration. Thus, we also discuss the candidates for lung disease therapeutics that regulate mitochondrial network dynamics.
线粒体曾经被认为是生物能量学的一部分,现在被广泛认为是细胞健康的协调者和细胞死亡的守门员。肺部疾病领域已经进行了广泛的努力来探索线粒体在调节炎症、细胞代谢、细胞凋亡和氧化应激中的作用。然而,这些过程中的一个关键组成部分需要更深入的研究:线粒体网络动力学。线粒体的形态会根据环境的变化而改变,通过融合、裂变和自噬来调节这些过程。这使得线粒体能够适应其功能以响应细胞的需求,这是维持细胞内稳态的关键组成部分。因此,线粒体网络动力学可以被视为连接多个细胞过程的桥梁,为治疗干预提供了一个潜在的途径。在这篇综述中,我们讨论了线粒体动力学的关键调节剂,以及它们在肺部疾病中的变化情况,包括慢性阻塞性肺疾病(COPD)、特发性肺纤维化(IPF)、急性肺损伤(ALI)和肺动脉高压(PAH)。失调的线粒体网络在肺部疾病的病理生理学中起着至关重要的作用,异常的分裂/融合/自噬途径是可治疗的过程,值得进一步探索。因此,我们还讨论了调节线粒体网络动力学的肺部疾病治疗候选药物。
Life Sci. 2021-11-1
J Cell Physiol. 2024-11
Eur Respir Rev. 2017-10-25
Biochem Pharmacol. 2022-3
Am J Respir Cell Mol Biol. 2020-11
MedComm (2020). 2025-8-15
J Inflamm Res. 2025-7-22
Front Cell Dev Biol. 2025-7-7