Suppr超能文献

通过硅光子晶体上亚微米方形 GST 图案的相变控制纳米腔调谐与形成

Nanocavity tuning and formation controlled by the phase change of sub-micron-square GST patterns on Si photonic crystals.

作者信息

Uemura Takahiro, Chiba Hisashi, Yoda Taiki, Moritake Yuto, Tanaka Yusuke, Ono Masaaki, Kuramochi Eiichi, Notomi Masaya

出版信息

Opt Express. 2024 Jan 15;32(2):1802-1824. doi: 10.1364/OE.510757.

Abstract

It has been well established that photonic crystal nanocavities with wavelength sized mode volume enable various integrable photonic devices with extremely small consumption energy and small footprint. In this study, we explore the possibility of non-volatile functionalities employing photonic crystal nanocavities and phase change material, GeSbTe (GST). Recently, non-volatile photonic devices based on GST have attracted significant interest and are expected to enable energy-efficient photonic processing, especially for optical computing. However, the device size and the area of GST in previous studies have been rather large. Here, we propose and fabricate Si photonic crystal nanocavities on which submicron-square GST patterns are selectively loaded. Because of the strong light confinement, extremely small area of GST is sufficient to manipulate the cavity mode. We have succeeded to fabricate 30-nm-thick and several-100nm-square GST blocks patterned at the center of photonic crystal cavity with a high alignment accuracy. We confirmed that the resonant wavelength and Q-factor of cavity modes are controlled by the phase change of GST. Moreover, cavity formation controlled by submicron-sized GST is also demonstrated by GST-loaded photonic-crystal line-defect waveguides. Our approach in which we place sub-micron-sized GST inside a photonic crystal nanocavity is promising for realizing extremely energy-efficient non-volatile integrable photonic devices, such as switches, modulators, memories, and reconfigurable novel devices.

摘要

波长尺寸模式体积的光子晶体纳米腔能够实现各种具有极低能耗和小尺寸的可集成光子器件,这一点已经得到充分证实。在本研究中,我们探索了利用光子晶体纳米腔和相变材料锗锑碲(GST)实现非易失性功能的可能性。最近,基于GST的非易失性光子器件引起了广泛关注,并有望实现节能光子处理,特别是在光学计算方面。然而,以往研究中的器件尺寸和GST的面积都相当大。在此,我们提出并制作了选择性加载亚微米方形GST图案的硅光子晶体纳米腔。由于强光限制,极小面积的GST就足以操控腔模。我们成功制作出了厚度为30纳米、边长为几百纳米的GST块,其图案位于光子晶体腔的中心,对准精度很高。我们证实,腔模的共振波长和品质因数受GST的相变控制。此外,加载GST的光子晶体线缺陷波导也证明了由亚微米尺寸的GST控制的腔形成。我们将亚微米尺寸的GST置于光子晶体纳米腔内的方法,对于实现诸如开关、调制器、存储器和可重构新型器件等极具能效的非易失性可集成光子器件很有前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验