Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA.
Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
Methods. 2024 Mar;223:95-105. doi: 10.1016/j.ymeth.2024.01.019. Epub 2024 Jan 30.
DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described. The fluorescent human RPA described here will enable high-resolution structure-function analysis of RPA-ssDNA interactions.
DNA 代谢过程包括复制、修复、重组和端粒维持都发生在单链 DNA(ssDNA)上。在这些复杂的过程中,数十种蛋白质在 ssDNA 模板上共同发挥作用。然而,当双链 DNA 解开时,瞬时开放的 ssDNA 会被高亲和力的异三聚体 ssDNA 结合复制蛋白 A(RPA)保护和覆盖。几乎所有下游的 DNA 过程都必须首先重塑/去除 RPA 或与其一起作用,以访问被 RPA 掩盖的 ssDNA。RPA-ssDNA 复合物的形成会触发 DNA 损伤检查点反应,是激活大多数 DNA 修复和重组途径的关键步骤。因此,除了保护暴露的 ssDNA 外,RPA 还作为一个门控因子,定义 DNA 维持和基因组完整性中的功能特异性。RPA 通过利用多个 DNA 结合和蛋白质相互作用结构域连接的柔性接头的多结构域架构实现功能灵活性。这种灵活的模块化架构使 RPA 能够采用多种配置,以适应特定的 DNA 代谢角色。为了实验捕获 RPA 与 ssDNA 和相互作用蛋白结合时的结构域动态,我们在这里描述了使用 4-叠氮-L-苯丙氨酸(4AZP)掺入和点击化学生成人 RPA(RPA)活性位点特异性荧光版本的方法。这种方法也可以应用于其他多结构域蛋白的特异性修饰。还描述了用于测量 RPA 在 DNA 上动态的非经典氨基酸荧光增强(FEncAA)和Förster 共振能量转移(FRET)测定法。这里描述的荧光人 RPA 将能够实现 RPA-ssDNA 相互作用的高分辨率结构功能分析。