Suppr超能文献

洛杉矶地区多种族群体的疾病风险和医疗保健利用情况。

Disease risk and healthcare utilization among ancestrally diverse groups in the Los Angeles region.

机构信息

Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA.

Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.

出版信息

Nat Med. 2023 Jul;29(7):1845-1856. doi: 10.1038/s41591-023-02425-1. Epub 2023 Jul 18.

Abstract

An individual's disease risk is affected by the populations that they belong to, due to shared genetics and environmental factors. The study of fine-scale populations in clinical care is important for identifying and reducing health disparities and for developing personalized interventions. To assess patterns of clinical diagnoses and healthcare utilization by fine-scale populations, we leveraged genetic data and electronic medical records from 35,968 patients as part of the UCLA ATLAS Community Health Initiative. We defined clusters of individuals using identity by descent, a form of genetic relatedness that utilizes shared genomic segments arising due to a common ancestor. In total, we identified 376 clusters, including clusters with patients of Afro-Caribbean, Puerto Rican, Lebanese Christian, Iranian Jewish and Gujarati ancestry. Our analysis uncovered 1,218 significant associations between disease diagnoses and clusters and 124 significant associations with specialty visits. We also examined the distribution of pathogenic alleles and found 189 significant alleles at elevated frequency in particular clusters, including many that are not regularly included in population screening efforts. Overall, this work progresses the understanding of health in understudied communities and can provide the foundation for further study into health inequities.

摘要

个体的疾病风险受到他们所属人群的影响,这是由于共同的遗传和环境因素。在临床护理中研究精细人群对于识别和减少健康差距以及开发个性化干预措施非常重要。为了评估精细人群的临床诊断和医疗保健利用模式,我们利用了 35968 名患者的遗传数据和电子病历,这是 UCLA ATLAS 社区健康倡议的一部分。我们使用血缘关系定义个体聚类,这是一种遗传关联性的形式,利用由于共同祖先而产生的共享基因组片段。总共,我们确定了 376 个聚类,包括具有非裔加勒比人、波多黎各人、黎巴嫩基督徒、伊朗犹太人以及古吉拉特人血统的患者聚类。我们的分析揭示了 1218 个疾病诊断与聚类之间的显著关联,以及 124 个与专科就诊之间的显著关联。我们还检查了致病等位基因的分布,发现了 189 个在特定聚类中频率升高的显著等位基因,其中包括许多通常不包括在人群筛查中的等位基因。总的来说,这项工作增进了对未充分研究社区健康的理解,并为进一步研究健康不平等提供了基础。

相似文献

本文引用的文献

6
Precision Medicine Needs to Think Outside the Box.精准医学需要跳出框框思考。
Front Genet. 2022 Apr 26;13:795992. doi: 10.3389/fgene.2022.795992. eCollection 2022.
7
Getting genetic ancestry right for science and society.为科学和社会准确解析基因谱系。
Science. 2022 Apr 15;376(6590):250-252. doi: 10.1126/science.abm7530. Epub 2022 Apr 14.
8
Inferring population structure in biobank-scale genomic data.推断生物库规模基因组数据中的群体结构。
Am J Hum Genet. 2022 Apr 7;109(4):727-737. doi: 10.1016/j.ajhg.2022.02.015. Epub 2022 Mar 16.
9
Racial Biology and Medical Misconceptions.种族生物学与医学误解。
N Engl J Med. 2022 Feb 10;386(6):501-503. doi: 10.1056/NEJMp2116224. Epub 2022 Feb 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验