College of Electrical and Information Engineering, Hunan University, Changsha, China.
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
J Transl Med. 2024 Feb 3;22(1):131. doi: 10.1186/s12967-024-04915-3.
The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relatively underdeveloped in computational pathology. Pathogenomics, as an invasive method to integrate advanced molecular diagnostics from genomic data, morphological information from histopathological imaging, and codified clinical data enable the discovery of new multimodal cancer biomarkers to propel the field of precision oncology in the coming decade. In this perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods in pathogenomics. It includes correlation between the pathological and genomic profile of cancer, fusion of histology, and genomics profile of cancer. We also present challenges, opportunities, and avenues for future work.
能够收集异构数据,加上人工智能越来越强大的分析能力,正在引领生命科学领域对多模态数据的利用发生变革。然而,大多数方法仅限于单模态数据,因此计算病理学领域中跨模态的综合方法相对欠发达。病原体组学作为一种将先进的分子诊断从基因组数据、组织病理学成像的形态信息以及编码的临床数据集成的侵入性方法,可以发现新的多模态癌症生物标志物,推动未来十年精准肿瘤学领域的发展。在这篇观点文章中,我们提出了在病原体组学中利用新兴的多模态人工智能方法综合互补模态数据的看法。这包括癌症的病理学和基因组特征之间的相关性、癌症的组织学和基因组特征的融合等方面。我们还提出了挑战、机遇和未来工作的途径。