Suppr超能文献

使用级联前馈神经网络和广义回归神经网络估算一氧化碳在纯水和盐水中的溶解度:应用于盐水层中一氧化碳溶解捕集

Toward Estimating CO Solubility in Pure Water and Brine Using Cascade Forward Neural Network and Generalized Regression Neural Network: Application to CO Dissolution Trapping in Saline Aquifers.

作者信息

Zou Xinyuan, Zhu Yingting, Lv Jing, Zhou Yuchi, Ding Bin, Liu Weidong, Xiao Kai, Zhang Qun

机构信息

State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China.

Research Institute of Petroleum Exploration & Development, Beijing 100083, China.

出版信息

ACS Omega. 2024 Jan 17;9(4):4705-4720. doi: 10.1021/acsomega.3c07962. eCollection 2024 Jan 30.

Abstract

Predicting carbon dioxide (CO) solubility in water and brine is crucial for understanding carbon capture and storage (CCS) processes. Accurate solubility predictions inform the feasibility and effectiveness of CO dissolution trapping, a key mechanism in carbon sequestration in saline aquifers. In this work, a comprehensive data set comprising 1278 experimental solubility data points for CO-brine systems was assembled, encompassing diverse operating conditions. These data encompassed brines containing six different salts: NaCl, KCl, NaHCO, CaCl, MgCl, and NaSO. Also, this databank encompassed temperature spanning from 273.15 to 453.15 K and a pressure range spanning 0.06-100 MPa. To model this solubility databank, cascade forward neural network (CFNN) and generalized regression neural network (GRNN) were employed. Furthermore, three optimization algorithms, namely, Bayesian Regularization (BR), Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton, and Levenberg-Marquardt (LM), were applied to enhance the performance of the CFNN models. The CFNN-LM model showcased average absolute percent relative error (AAPRE) values of 5.37% for the overall data set, 5.26% for the training subset, and 5.85% for the testing subset. Overall, the CFNN-LM model stands out as the most accurate among the models crafted in this study, boasting the highest overall value of 0.9949 among the other models. Based on sensitivity analysis, pressure exerts the most significant influence and stands as the sole parameter with a positive impact on CO solubility in brine. Conversely, temperature and the concentration of all six salts considered in the model exhibited a negative impact. All salts exert a negative impact on CO solubility due to their salting-out effect, with varying degrees of influence. The salting-out effects of the salts can be ranked as follows: from the most pronounced to the least: MgCl > CaCl > NaCl > KCl > NaHCO > NaSO. By employing the leverage approach, only a few instances of potential suspected and out-of-leverage data were found. The relatively low count of identified potential suspected and out-of-leverage data, given the expansive solubility database, underscores the reliability and accuracy of both the data set and the CFNN-LM model's performance in this survey.

摘要

预测二氧化碳(CO₂)在水和盐水中的溶解度对于理解碳捕获与封存(CCS)过程至关重要。准确的溶解度预测为CO₂溶解捕集的可行性和有效性提供依据,而CO₂溶解捕集是盐水层碳封存的关键机制。在这项工作中,收集了一个包含1278个CO₂ - 盐水体系实验溶解度数据点的综合数据集,涵盖了各种操作条件。这些数据包括含有六种不同盐的盐水:氯化钠(NaCl)、氯化钾(KCl)、碳酸氢钠(NaHCO₃)、氯化钙(CaCl₂)、氯化镁(MgCl₂)和硫酸钠(Na₂SO₄)。此外,该数据库涵盖的温度范围为273.15至453.15 K,压力范围为0.06 - 100 MPa。为了对这个溶解度数据库进行建模,采用了级联前馈神经网络(CFNN)和广义回归神经网络(GRNN)。此外,还应用了三种优化算法,即贝叶斯正则化(BR)、布罗伊登 - 弗莱彻 - 戈德法布 - 香农(BFGS)拟牛顿法和列文伯格 - 马夸尔特(LM)法,以提高CFNN模型的性能。CFNN - LM模型在整个数据集上的平均绝对百分比相对误差(AAPRE)值为5.37%,在训练子集上为5.26%,在测试子集上为5.85%。总体而言,CFNN - LM模型在本研究构建的模型中最为准确,在其他模型中其整体R²值最高,为0.9949。基于敏感性分析,压力的影响最为显著,是对盐水中CO₂溶解度有正向影响的唯一参数。相反,模型中考虑的温度和所有六种盐的浓度均表现出负面影响。由于盐析效应,所有盐对CO₂溶解度都有负面影响,只是影响程度不同。盐的盐析效应排序如下:从最显著到最不显著依次为:氯化镁(MgCl₂)>氯化钙(CaCl₂)>氯化钠(NaCl)>氯化钾(KCl)>碳酸氢钠(NaHCO₃)>硫酸钠(Na₂SO₄)。通过采用杠杆方法,仅发现了少数潜在可疑和杠杆外数据实例。鉴于溶解度数据库庞大,已识别的潜在可疑和杠杆外数据数量相对较少,这凸显了本调查中数据集和CFNN - LM模型性能的可靠性和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7749/10831835/feaea8261ce4/ao3c07962_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验