Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
Nano Lett. 2024 Feb 21;24(7):2234-2241. doi: 10.1021/acs.nanolett.3c04446. Epub 2024 Feb 6.
Negative capacitance at low frequencies for spiking neurons was first demonstrated in 1941 (K. S. Cole) by using extracellular electrodes. The phenomenon subsequently was explained by using the Hodgkin-Huxley model and is due to the activity of voltage-gated potassium ion channels. We show that () biofilms exhibit significant stable negative capacitances at low frequencies when they experience a small DC bias voltage in electrical impedance spectroscopy experiments. Using a frequency domain Hodgkin-Huxley model, we characterize the conditions for the emergence of this feature and demonstrate that the negative capacitance exists only in biofilms containing living cells. Furthermore, we establish the importance of the voltage-gated potassium ion channel, Kch, using knock-down mutants. The experiments provide further evidence for voltage-gated ion channels in and a new, low-cost method to probe biofilm electrophysiology, e.g., to understand the efficacy of antibiotics. We expect that the majority of bacterial biofilms will demonstrate negative capacitances.
低频下的尖峰神经元负电容最早于 1941 年(K.S. Cole)通过使用细胞外电极得到证实。该现象随后通过 Hodgkin-Huxley 模型得到解释,是由于电压门控钾离子通道的活动所致。我们发现,当生物膜在阻抗谱实验中经历小的直流偏置电压时,会表现出显著的低频稳定负电容。使用频域 Hodgkin-Huxley 模型,我们描述了这种特征出现的条件,并证明负电容仅存在于含有活细胞的生物膜中。此外,我们利用敲低突变体证明了电压门控钾离子通道 Kch 的重要性。实验为电压门控离子通道在生物膜中的作用提供了进一步的证据,同时也为研究生物膜电生理学提供了一种新的、低成本的方法,例如,了解抗生素的疗效。我们预计大多数细菌生物膜都将表现出负电容。