Bachhar Anushree, Jablonsky Jiri
Institute of Complex Systems, FFPW, University of South Bohemia, CENAKVA, Nove Hrady, Czechia.
Front Microbiol. 2022 Aug 16;13:967545. doi: 10.3389/fmicb.2022.967545. eCollection 2022.
The Entner-Doudoroff pathway (ED-P) was established in 2016 as the fourth glycolytic pathway in . PCC 6803. ED-P consists of two reactions, the first catalyzed by 6-phosphogluconate dehydratase (EDD), the second by keto3-deoxygluconate-6-phosphate aldolase/4-hydroxy-2-oxoglutarate aldolase (EDA). ED-P was previously concluded to be a widespread (∼92%) pathway among cyanobacteria, but current bioinformatic analysis estimated the occurrence of ED-P to be either scarce (∼1%) or uncommon (∼47%), depending if dihydroxy-acid dehydratase (ilvD) also functions as EDD (currently assumed). Thus, the biochemical characterization of ilvD is a task pending to resolve this uncertainty. Next, we have provided new insights into several single and double glycolytic mutants based on kinetic model of central carbon metabolism of . The model predicted that silencing 6-phosphogluconate dehydrogenase () could be coupled with ∼90% down-regulation of G6P-dehydrogenase, also limiting the metabolic flux ED-P. Furthermore, our metabolic flux estimation implied that growth impairment linked to silenced EDA under mixotrophic conditions is not caused by diminished carbon flux ED-P but rather by a missing mechanism related to the role of EDA in metabolism. We proposed two possible, mutually non-exclusive explanations: (i) Δ leads to disrupted carbon catabolite repression, regulated by 2-keto3-deoxygluconate-6-phosphate (ED-P intermediate), and (ii) EDA catalyzes the interconversion between glyoxylate and 4-hydroxy-2-oxoglutarate + pyruvate in the proximity of TCA cycle, possibly effecting the levels of 2-oxoglutarate under Δ. We have also proposed a new pathway from EDA toward proline, which could explain the proline accumulation under Δ. In addition, the presented method provides an alternative to C metabolic flux analysis for marginal metabolic pathways around/below the threshold of ultrasensitive LC-MS. Finally, our analysis provided alternative explanations for the role of ED-P in while identifying some severe uncertainties.
恩特纳-杜德洛夫途径(ED途径)于2016年被确立为集胞藻6803中的第四条糖酵解途径。ED途径由两个反应组成,第一个反应由6-磷酸葡萄糖酸脱水酶(EDD)催化,第二个反应由3-酮-脱氧葡萄糖酸-6-磷酸醛缩酶/4-羟基-2-氧代戊二酸醛缩酶(EDA)催化。ED途径先前被认为是蓝细菌中广泛存在(约92%)的途径,但目前的生物信息学分析估计,ED途径的出现情况要么稀少(约1%),要么不常见(约47%),这取决于二羟基酸脱水酶(ilvD)是否也作为EDD发挥作用(目前假定如此)。因此,ilvD的生化特性是解决这一不确定性的一项有待完成的任务。接下来,我们基于集胞藻中心碳代谢的动力学模型,对几个单糖酵解突变体和双糖酵解突变体有了新的认识。该模型预测,沉默6-磷酸葡萄糖酸脱氢酶()可能与G6P脱氢酶约90%的下调相关联,这也限制了ED途径的代谢通量。此外,我们的代谢通量估计表明,在混合营养条件下,与沉默EDA相关的生长受损并非由ED途径中碳通量的减少引起,而是由与EDA在代谢中的作用相关的缺失机制导致的。我们提出了两种可能且互不排斥的解释:(i)Δ导致碳分解代谢物阻遏被破坏,这是由3-酮-脱氧葡萄糖酸-6-磷酸(ED途径中间体)调控的;(ii)EDA在三羧酸循环附近催化乙醛酸与4-羟基-2-氧代戊二酸+丙酮酸之间的相互转化,这可能影响Δ条件下2-氧代戊二酸的水平。我们还提出了一条从EDA到脯氨酸的新途径,这可以解释Δ条件下脯氨酸的积累。此外,所提出的方法为超灵敏液相色谱-质谱阈值附近/以下的边缘代谢途径提供了一种替代碳代谢通量分析的方法。最后,我们的分析为ED途径在集胞藻中的作用提供了替代解释,同时也发现了一些严重的不确定性。