Suppr超能文献

通过基于多期CT数据训练的分层人工智能系统自动预测肝转移瘤的起源:一项回顾性多中心研究

Automatic origin prediction of liver metastases via hierarchical artificial-intelligence system trained on multiphasic CT data: a retrospective, multicentre study.

作者信息

Xin Hongjie, Zhang Yiwen, Lai Qianwei, Liao Naying, Zhang Jing, Liu Yanping, Chen Zhihua, He Pengyuan, He Jian, Liu Junwei, Zhou Yuchen, Yang Wei, Zhou Yuanping

机构信息

Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.

School of Biomedical Engineering, Southern Medical University, Guangzhou, China.

出版信息

EClinicalMedicine. 2024 Feb 1;69:102464. doi: 10.1016/j.eclinm.2024.102464. eCollection 2024 Mar.

Abstract

BACKGROUND

Currently, the diagnostic testing for the primary origin of liver metastases (LMs) can be laborious, complicating clinical decision-making. Directly classifying the primary origin of LMs at computed tomography (CT) images has proven to be challenging, despite its potential to streamline the entire diagnostic workflow.

METHODS

We developed ALMSS, an artificial intelligence (AI)-based LMs screening system, to provide automated liver contrast-enhanced CT analysis for distinguishing LMs from hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), as well as subtyping primary origin of LMs as six organ systems. We processed a CECT dataset between January 1, 2013 and June 30, 2022 (n = 3105: 840 HCC, 354 ICC, and 1911 LMs) for training and internally testing ALMSS, and two additional cohorts (n = 622) for external validation of its diagnostic performance. The performance of radiologists with and without the assistance of ALMSS in diagnosing and subtyping LMs was assessed.

FINDINGS

ALMSS achieved average area under the curve (AUC) of 0.917 (95% confidence interval [CI]: 0.899-0.931) and 0.923 (95% [CI]: 0.905-0.937) for differentiating LMs, HCC and ICC on both the internal testing set and external testing set, outperformed that of two radiologists. Moreover, ALMSS yielded average AUC of 0.815 (95% [CI]: 0.794-0.836) and 0.818 (95% [CI]: 0.790-0.842) for predicting six primary origins on both two testing sets. Interestingly, ALMSS assigned origin diagnoses for LMs with pathological phenotypes beyond the training categories with average AUC of 0.761 (95% [CI]: 0.657-0.842), which verify the model's diagnostic expandability.

INTERPRETATION

Our study established an AI-based diagnostic system that effectively identifies and characterizes LMs directly from multiphasic CT images.

FUNDING

National Natural Science Foundation of China, Guangdong Provincial Key Laboratory of Medical Image Processing.

摘要

背景

目前,肝转移瘤(LMs)原发灶的诊断检测可能很繁琐,使临床决策复杂化。尽管在计算机断层扫描(CT)图像上直接对LMs的原发灶进行分类有可能简化整个诊断流程,但事实证明这具有挑战性。

方法

我们开发了ALMSS,这是一种基于人工智能(AI)的LMs筛查系统,用于提供肝脏对比增强CT自动分析,以区分LMs与肝细胞癌(HCC)和肝内胆管癌(ICC),并将LMs的原发灶分为六个器官系统进行亚型分类。我们处理了2013年1月1日至2022年6月30日期间的一个CECT数据集(n = 3105:840例HCC、354例ICC和1911例LMs)用于训练和内部测试ALMSS,另外两个队列(n = 622)用于外部验证其诊断性能。评估了在有和没有ALMSS辅助的情况下放射科医生对LMs进行诊断和亚型分类的表现。

结果

在内部测试集和外部测试集上,ALMSS在区分LMs、HCC和ICC方面的平均曲线下面积(AUC)分别达到0.917(95%置信区间[CI]:0.899 - 0.931)和0.923(95%[CI]:0.905 - 0.937),优于两名放射科医生。此外,在两个测试集上,ALMSS预测六个原发灶的平均AUC分别为0.815(95%[CI]:0.794 - 0.836)和0.818(95%[CI]:0.790 - 0.842)。有趣的是,ALMSS对具有超出训练类别的病理表型的LMs进行起源诊断,平均AUC为0.761(95%[CI]:0.657 - 0.842),这验证了该模型的诊断扩展性。

解读

我们的研究建立了一种基于人工智能的诊断系统,可直接从多期CT图像中有效识别和表征LMs。

资助

中国国家自然科学基金、广东省医学图像处理重点实验室。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ea/10847157/11c3519dde6f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验