Carulla Maria, Barten Rebecca, Baruffaldi Filippo, Bergamaschi Anna, Borghi Giacomo, Boscardin Maurizio, Brückner Martin, Butcher Tim A, Centis Vignali Matteo, Dinapoli Roberto, Ebner Simon, Ficorella Francesco, Fröjdh Erik, Greiffenberg Dominic, Hammad Ali Omar, Hasanaj Shqipe, Heymes Julian, Hinger Viktoria, King Thomas, Kozlowski Pawel, Lopez Cuenca Carlos, Mezza Davide, Moustakas Konstantinos, Mozzanica Aldo, Paternoster Giovanni, Paton Kirsty A, Ronchin Sabina, Ruder Christian, Schmitt Bernd, Sieberer Patrick, Thattil Dhanya, Vogelsang Konrad, Xie Xiangyu, Zhang Jiaguo
Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland.
Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy.
Sensors (Basel). 2024 Jan 31;24(3):942. doi: 10.3390/s24030942.
Hybrid pixel detectors have become indispensable at synchrotron and X-ray free-electron laser facilities thanks to their large dynamic range, high frame rate, low noise, and large area. However, at energies below 3 keV, the detector performance is often limited because of the poor quantum efficiency of the sensor and the difficulty in achieving single-photon resolution due to the low signal-to-noise ratio. In this paper, we address the quantum efficiency of silicon sensors by refining the design of the entrance window, mainly by passivating the silicon surface and optimizing the dopant profile of the n region. We present the measurement of the quantum efficiency in the soft X-ray energy range for silicon sensors with several process variations in the fabrication of planar sensors with thin entrance windows. The quantum efficiency for 250 eV photons is increased from almost 0.5% for a standard sensor to up to 62% as a consequence of these developments, comparable to the quantum efficiency of backside-illuminated scientific CMOS sensors. Finally, we discuss the influence of the various process parameters on quantum efficiency and present a strategy for further improvement.
由于具有大动态范围、高帧率、低噪声和大面积等优点,混合像素探测器在同步加速器和X射线自由电子激光设施中已变得不可或缺。然而,在能量低于3 keV时,由于传感器的量子效率较低以及因信噪比低而难以实现单光子分辨率,探测器的性能往往受到限制。在本文中,我们通过优化入射窗设计来解决硅传感器的量子效率问题,主要方法是对硅表面进行钝化处理并优化n区的掺杂分布。我们展示了在具有薄入射窗的平面传感器制造过程中,几种工艺变化下硅传感器在软X射线能量范围内的量子效率测量结果。由于这些改进,250 eV光子的量子效率从标准传感器的近0.5%提高到了高达62%,与背照式科学互补金属氧化物半导体传感器的量子效率相当。最后,我们讨论了各种工艺参数对量子效率的影响,并提出了进一步改进的策略。