Suppr超能文献

分割人类新生儿磁共振成像数据中的下丘脑亚区。

Segmenting hypothalamic subunits in human newborn magnetic resonance imaging data.

机构信息

Development, Health and Disease Research Program, University of California, Irvine, California, USA.

Department of Pediatrics, University of California, Irvine, California, USA.

出版信息

Hum Brain Mapp. 2024 Feb 1;45(2):e26582. doi: 10.1002/hbm.26582.

Abstract

Preclinical evidence suggests that inter-individual variation in the structure of the hypothalamus at birth is associated with variation in the intrauterine environment, with downstream implications for future disease susceptibility. However, scientific advancement in humans is limited by a lack of validated methods for the automatic segmentation of the newborn hypothalamus. N = 215 healthy full-term infants with paired T1-/T2-weighted MR images across four sites were considered for primary analyses (mean postmenstrual age = 44.3 ± 3.5 weeks, n /n  = 110/106). The outputs of FreeSurfer's hypothalamic subunit segmentation tools designed for adults (segFS) were compared against those of a novel registration-based pipeline developed here (segATLAS) and against manually edited segmentations (segMAN) as reference. Comparisons were made using Dice Similarity Coefficients (DSCs) and through expected associations with postmenstrual age at scan. In addition, we aimed to demonstrate the validity of the segATLAS pipeline by testing for the stability of inter-individual variation in hypothalamic volume across the first year of life (n = 41 longitudinal datasets available). SegFS and segATLAS segmentations demonstrated a wide spread in agreement (mean DSC = 0.65 ± 0.14 SD; range = {0.03-0.80}). SegATLAS volumes were more highly correlated with postmenstrual age at scan than segFS volumes (n = 215 infants; R  = 65% vs. R  = 40%), and segATLAS volumes demonstrated a higher degree of agreement with segMAN reference segmentations at the whole hypothalamus (segATLAS DSC = 0.89 ± 0.06 SD; segFS DSC = 0.68 ± 0.14 SD) and subunit levels (segATLAS DSC = 0.80 ± 0.16 SD; segFS DSC = 0.40 ± 0.26 SD). In addition, segATLAS (but not segFS) volumes demonstrated stability from near birth to ~1 years age (n = 41; R  = 25%; p < 10 ). These findings highlight segATLAS as a valid and publicly available (https://github.com/jerodras/neonate_hypothalamus_seg) pipeline for the segmentation of hypothalamic subunits using human newborn MRI up to 3 months of age collected at resolutions on the order of 1 mm isotropic. Because the hypothalamus is traditionally understudied due to a lack of high-quality segmentation tools during the early life period, and because the hypothalamus is of high biological relevance to human growth and development, this tool may stimulate developmental and clinical research by providing new insight into the unique role of the hypothalamus and its subunits in shaping trajectories of early life health and disease.

摘要

临床前证据表明,出生时下丘脑结构的个体间差异与宫内环境有关,这对未来疾病易感性有下游影响。然而,由于缺乏用于自动分割新生儿下丘脑的经过验证的方法,人类的科学进展受到限制。共考虑了来自四个地点的 215 名健康足月婴儿的配对 T1-/T2 加权 MR 图像进行主要分析(平均月经后年龄= 44.3±3.5 周,n/n=110/106)。比较了 FreeSurfer 为成人设计的下丘脑亚单位分割工具(segFS)的输出与这里开发的新基于配准的管道(segATLAS)的输出以及手动编辑的分割(segMAN)作为参考。使用 Dice 相似系数(DSC)进行比较,并通过与扫描时的月经后年龄的预期关联进行比较。此外,我们旨在通过测试下丘脑体积在生命第一年的个体间变化的稳定性来证明 segATLAS 管道的有效性(可用于 41 个纵向数据集)。segFS 和 segATLAS 分割显示出广泛的一致性(平均 DSC=0.65±0.14 SD;范围={0.03-0.80})。segATLAS 体积与扫描时的月经后年龄比 segFS 体积更相关(n=215 名婴儿;R =65%比 R =40%),并且 segATLAS 体积与 segMAN 参考分割在整个下丘脑(segATLAS DSC=0.89±0.06 SD;segFS DSC=0.68±0.14 SD)和亚单位水平(segATLAS DSC=0.80±0.16 SD;segFS DSC=0.40±0.26 SD)上具有更高的一致性。此外,segATLAS(而非 segFS)体积显示出从接近出生到约 1 岁的稳定性(n=41;R =25%;p <10)。这些发现突出了 segATLAS 是一种有效的、公开可用的(https://github.com/jerodras/neonate_hypothalamus_seg)管道,用于对人类新生儿 MRI 进行下丘脑亚单位的分割,分辨率为 1mm 各向同性,年龄在 3 个月以内。由于传统上由于在生命早期缺乏高质量的分割工具,下丘脑研究不足,并且由于下丘脑对人类生长和发育具有很高的生物学相关性,因此该工具可能通过提供对下丘脑及其亚单位在塑造早期生命健康和疾病轨迹中的独特作用的新见解,从而激发发育和临床研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5480/10826633/2d960d8a769a/HBM-45-e26582-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验