Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, Maryland 20892, United States.
J Phys Chem Lett. 2024 Feb 22;15(7):1930-1935. doi: 10.1021/acs.jpclett.3c03563. Epub 2024 Feb 12.
Non-equilibrium kinetics techniques like pressure-jump nuclear magnetic resonance (NMR) are powerful in tracking changes in oligomeric populations and are not limited by relaxation rates for the time scales of exchange that can be probed. However, these techniques are less sensitive to minor, transient populations than are Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments. We integrated non-equilibrium pressure-jump and equilibrium CPMG relaxation dispersion data to fully map the kinetic landscape of melittin tetramerization. While monomeric peptides weakly form dimers ( ≈ 26 mM) whose population never exceeds 1.6% at 288 K, dimers associate tightly to form stable tetrameric species ( ≈ 740 nM). Exchange between the monomer and dimer, along with exchange between the dimer and tetramer, occurs on the millisecond time scale. The NMR approach developed herein can be readily applied to studying the folding and misfolding of a wide range of oligomeric assemblies.
非平衡动力学技术,如压力跳跃核磁共振(NMR),在跟踪低聚物群体的变化方面非常有效,并且不受可探测交换时间尺度的弛豫率的限制。然而,与 Carr-Purcell-Meiboom-Gill(CPMG)弛豫分散实验相比,这些技术对较小的瞬态群体的灵敏度较低。我们整合了非平衡压力跳跃和平衡 CPMG 弛豫分散数据,以全面描绘蜂毒素四聚体化的动力学景观。虽然单体肽弱形成二聚体(约 26 mM),但其在 288 K 时的群体从未超过 1.6%,但二聚体紧密缔合形成稳定的四聚体物种(约 740 nM)。单体和二聚体之间以及二聚体和四聚体之间的交换发生在毫秒时间尺度上。本文开发的 NMR 方法可以很容易地应用于研究广泛的寡聚体组装的折叠和错误折叠。