Pușcaș Irina Maria, Gâta Anda, Roman Alexandra, Albu Silviu, Gâta Vlad Alexandru, Irimie Alexandru
Department of Otorhinolaryngology, University of Medicine and Pharmacy "Iuliu Hatieganu", 400349 Cluj-Napoca, Romania.
Department of Periodontology, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
Medicina (Kaunas). 2025 Jul 21;61(7):1310. doi: 10.3390/medicina61071310.
Nasopharyngeal carcinoma (NPC) represents a prevalent malignant tumor within the head and neck region, and enhancing the precision of prognostic assessments is a critical objective. Recent advancements in the integration of artificial intelligence (AI) and medical imaging have spurred a surge in research focusing on NPC image analysis through AI applications, particularly employing radiomics and artificial neural network approaches. This review provides a detailed examination of the prognostic advancement in NPC, utilizing imaging studies based on radiomics and deep learning techniques. The findings from these studies offer a promising outlook for achieving exceptionally precise prognoses regarding survival and treatment responses in NPC. The limitations of existing research and the potential for further application of radiomics and deep learning in NPC imaging are explored. It is recommended that future research efforts should aim to develop a comprehensive, labeled dataset of NPC images and prioritize studies that leverage AI for NPC screening.
鼻咽癌(NPC)是头颈部常见的恶性肿瘤,提高预后评估的准确性是一个关键目标。人工智能(AI)与医学成像相结合的最新进展激发了大量研究,这些研究聚焦于通过AI应用进行NPC图像分析,特别是采用放射组学和人工神经网络方法。本综述利用基于放射组学和深度学习技术的影像学研究,对NPC的预后进展进行了详细考察。这些研究结果为实现对NPC生存和治疗反应的极其精确的预后提供了一个有希望的前景。探讨了现有研究的局限性以及放射组学和深度学习在NPC成像中进一步应用的潜力。建议未来的研究应致力于开发一个全面的、有标记的NPC图像数据集,并优先开展利用AI进行NPC筛查的研究。
Medicina (Kaunas). 2025-7-21
Med Biol Eng Comput. 2024-12
Curr Opin Gastroenterol. 2023-9-1
Cancer Cell. 2024-3-11
Vis Comput Ind Biomed Art. 2023-12-1
Eur J Nucl Med Mol Imaging. 2023-11
Clin Med Insights Oncol. 2023-5-23