文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合放射组学与深度学习用于鼻咽癌的预后评估

Integrating Radiomics and Deep-Learning for Prognostic Evaluation in Nasopharyngeal Carcinoma.

作者信息

Pușcaș Irina Maria, Gâta Anda, Roman Alexandra, Albu Silviu, Gâta Vlad Alexandru, Irimie Alexandru

机构信息

Department of Otorhinolaryngology, University of Medicine and Pharmacy "Iuliu Hatieganu", 400349 Cluj-Napoca, Romania.

Department of Periodontology, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.

出版信息

Medicina (Kaunas). 2025 Jul 21;61(7):1310. doi: 10.3390/medicina61071310.


DOI:10.3390/medicina61071310
PMID:40731938
Abstract

Nasopharyngeal carcinoma (NPC) represents a prevalent malignant tumor within the head and neck region, and enhancing the precision of prognostic assessments is a critical objective. Recent advancements in the integration of artificial intelligence (AI) and medical imaging have spurred a surge in research focusing on NPC image analysis through AI applications, particularly employing radiomics and artificial neural network approaches. This review provides a detailed examination of the prognostic advancement in NPC, utilizing imaging studies based on radiomics and deep learning techniques. The findings from these studies offer a promising outlook for achieving exceptionally precise prognoses regarding survival and treatment responses in NPC. The limitations of existing research and the potential for further application of radiomics and deep learning in NPC imaging are explored. It is recommended that future research efforts should aim to develop a comprehensive, labeled dataset of NPC images and prioritize studies that leverage AI for NPC screening.

摘要

鼻咽癌(NPC)是头颈部常见的恶性肿瘤,提高预后评估的准确性是一个关键目标。人工智能(AI)与医学成像相结合的最新进展激发了大量研究,这些研究聚焦于通过AI应用进行NPC图像分析,特别是采用放射组学和人工神经网络方法。本综述利用基于放射组学和深度学习技术的影像学研究,对NPC的预后进展进行了详细考察。这些研究结果为实现对NPC生存和治疗反应的极其精确的预后提供了一个有希望的前景。探讨了现有研究的局限性以及放射组学和深度学习在NPC成像中进一步应用的潜力。建议未来的研究应致力于开发一个全面的、有标记的NPC图像数据集,并优先开展利用AI进行NPC筛查的研究。

相似文献

[1]
Integrating Radiomics and Deep-Learning for Prognostic Evaluation in Nasopharyngeal Carcinoma.

Medicina (Kaunas). 2025-7-21

[2]
Artificial intelligence-assisted detection of nasopharyngeal carcinoma on endoscopic images: a national, multicentre, model development and validation study.

Lancet Digit Health. 2025-6

[3]
Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects.

Int J Med Inform. 2024-8

[4]
Radiomics of pituitary adenoma using computer vision: a review.

Med Biol Eng Comput. 2024-12

[5]
Diagnostic accuracy of radiomics and artificial intelligence models in diagnosing lymph node metastasis in head and neck cancers: a systematic review and meta-analysis.

Neuroradiology. 2025-2

[6]
Predicting progression-free survival using dynamic contrast-enhanced imaging-based radiomics in advanced nasopharyngeal carcinoma patients treated with nimotuzumab.

Eur Radiol. 2025-2-14

[7]
An interpretable machine learning model assists in predicting induction chemotherapy response and survival for locoregionally advanced nasopharyngeal carcinoma using MRI: a multicenter study.

Eur Radiol. 2025-2-10

[8]
A review of deep learning and radiomics approaches for pancreatic cancer diagnosis from medical imaging.

Curr Opin Gastroenterol. 2023-9-1

[9]
Enhancing ultrasonographic detection of hepatocellular carcinoma with artificial intelligence: current applications, challenges and future directions.

BMJ Open Gastroenterol. 2025-7-1

[10]
Radiomics and deep learning characterisation of liver malignancies in CT images - A systematic review.

Comput Biol Med. 2025-8

本文引用的文献

[1]
Machine learning-derived prognostic signature for progression-free survival in non-metastatic nasopharyngeal carcinoma.

Head Neck. 2025-1

[2]
Enhancing Nasopharyngeal Carcinoma Survival Prediction: Integrating Pre- and Post-Treatment MRI Radiomics with Clinical Data.

J Imaging Inform Med. 2024-10

[3]
Radiomic signatures associated with tumor immune heterogeneity predict survival in locally recurrent nasopharyngeal carcinoma.

J Natl Cancer Inst. 2024-8-1

[4]
Multimodality radiomics for tumor prognosis in nasopharyngeal carcinoma.

PLoS One. 2024

[5]
Refining the 8th edition TNM classification for EBV related nasopharyngeal carcinoma.

Cancer Cell. 2024-3-11

[6]
Early prediction of long-term survival of patients with nasopharyngeal carcinoma by multi-parameter MRI radiomics.

Eur J Radiol Open. 2024-1-3

[7]
Comprehensive integrated analysis of MR and DCE-MR radiomics models for prognostic prediction in nasopharyngeal carcinoma.

Vis Comput Ind Biomed Art. 2023-12-1

[8]
Multi-task deep learning-based radiomic nomogram for prognostic prediction in locoregionally advanced nasopharyngeal carcinoma.

Eur J Nucl Med Mol Imaging. 2023-11

[9]
The Efficacy of Pretreatment F-FDG PET-CT-Based Deep Learning Network Structure to Predict Survival in Nasopharyngeal Carcinoma.

Clin Med Insights Oncol. 2023-5-23

[10]
Application of Artificial Intelligence to the Diagnosis and Therapy of Nasopharyngeal Carcinoma.

J Clin Med. 2023-4-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索