Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Hangzhou Institute of Technology, Xidian University, Hangzhou, China.
PLoS Comput Biol. 2024 Feb 12;20(2):e1011810. doi: 10.1371/journal.pcbi.1011810. eCollection 2024 Feb.
Agent-based models have gained traction in exploring the intricate processes governing the spread of infectious diseases, particularly due to their proficiency in capturing nonlinear interaction dynamics. The fidelity of agent-based models in replicating real-world epidemic scenarios hinges on the accurate portrayal of both population-wide and individual-level interactions. In situations where comprehensive population data are lacking, synthetic populations serve as a vital input to agent-based models, approximating real-world demographic structures. While some current population synthesizers consider the structural relationships among agents from the same household, there remains room for refinement in this domain, which could potentially introduce biases in subsequent disease transmission simulations. In response, this study unveils a novel methodology for generating synthetic populations tailored for infectious disease transmission simulations. By integrating insights from microsample-derived household structures, we employ a heuristic combinatorial optimizer to recalibrate these structures, subsequently yielding synthetic populations that faithfully represent agent structural relationships. Implementing this technique, we successfully generated a spatially-explicit synthetic population encompassing over 17 million agents for Shenzhen, China. The findings affirm the method's efficacy in delineating the inherent statistical structural relationship patterns, aligning well with demographic benchmarks at both city and subzone tiers. Moreover, when assessed against a stochastic agent-based Susceptible-Exposed-Infectious-Recovered model, our results pinpointed that variations in population synthesizers can notably alter epidemic projections, influencing both the peak incidence rate and its onset.
基于代理的模型在探索传染病传播的复杂过程方面取得了进展,特别是由于它们擅长捕捉非线性相互作用动态。基于代理的模型在复制现实世界的流行病场景的准确性取决于对人群水平和个体水平相互作用的准确描绘。在缺乏全面人口数据的情况下,合成人口是基于代理的模型的重要输入,近似于现实世界的人口结构。虽然一些当前的人口合成器考虑了来自同一家庭的代理之间的结构关系,但在这一领域仍有改进的空间,这可能会在随后的疾病传播模拟中引入偏差。针对这一问题,本研究揭示了一种针对传染病传播模拟生成合成人口的新方法。通过整合来自微样本衍生的家庭结构的见解,我们使用启发式组合优化器来重新校准这些结构,从而生成忠实反映代理结构关系的合成人口。通过实施该技术,我们成功地为中国深圳生成了一个包含超过 1700 万个代理的空间显式合成人口。研究结果证实了该方法在描绘固有统计结构关系模式方面的有效性,与城市和分区两级的人口基准非常吻合。此外,当根据随机基于代理的易感-暴露-感染-恢复模型进行评估时,我们的结果指出人口合成器的变化会显著改变流行病预测,影响发病率峰值及其出现时间。