Suppr超能文献

基于年龄和家庭结构的传染病政策建模计算框架及其在 COVID-19 大流行中的应用。

A computational framework for modelling infectious disease policy based on age and household structure with applications to the COVID-19 pandemic.

机构信息

School of Life Sciences, University of Warwick, Coventry, United Kingdom.

Zeeman Institue (SBIDER), University of Warwick, Coventry, United Kingdom.

出版信息

PLoS Comput Biol. 2022 Sep 6;18(9):e1010390. doi: 10.1371/journal.pcbi.1010390. eCollection 2022 Sep.

Abstract

The widespread, and in many countries unprecedented, use of non-pharmaceutical interventions (NPIs) during the COVID-19 pandemic has highlighted the need for mathematical models which can estimate the impact of these measures while accounting for the highly heterogeneous risk profile of COVID-19. Models accounting either for age structure or the household structure necessary to explicitly model many NPIs are commonly used in infectious disease modelling, but models incorporating both levels of structure present substantial computational and mathematical challenges due to their high dimensionality. Here we present a modelling framework for the spread of an epidemic that includes explicit representation of age structure and household structure. Our model is formulated in terms of tractable systems of ordinary differential equations for which we provide an open-source Python implementation. Such tractability leads to significant benefits for model calibration, exhaustive evaluation of possible parameter values, and interpretability of results. We demonstrate the flexibility of our model through four policy case studies, where we quantify the likely benefits of the following measures which were either considered or implemented in the UK during the current COVID-19 pandemic: control of within- and between-household mixing through NPIs; formation of support bubbles during lockdown periods; out-of-household isolation (OOHI); and temporary relaxation of NPIs during holiday periods. Our ordinary differential equation formulation and associated analysis demonstrate that multiple dimensions of risk stratification and social structure can be incorporated into infectious disease models without sacrificing mathematical tractability. This model and its software implementation expand the range of tools available to infectious disease policy analysts.

摘要

在 COVID-19 大流行期间,非药物干预(NPIs)被广泛使用,在许多国家前所未有,这凸显了需要数学模型来估计这些措施的影响,同时考虑到 COVID-19 极高的异质风险特征。在传染病建模中,通常使用既考虑年龄结构又考虑家庭结构的模型来明确建模许多 NPI,但由于其高维性,包含这两个层次结构的模型会带来巨大的计算和数学挑战。在这里,我们提出了一种用于传染病传播的建模框架,其中包括年龄结构和家庭结构的明确表示。我们的模型是用可处理的常微分方程组来表示的,我们为其提供了一个开源的 Python 实现。这种可处理性为模型校准、对可能的参数值进行详尽评估以及对结果的可解释性带来了显著的好处。我们通过四个政策案例研究展示了我们模型的灵活性,其中我们量化了以下措施的可能收益,这些措施要么是在当前 COVID-19 大流行期间在英国考虑或实施的,要么是在英国考虑或实施的:通过 NPI 控制家庭内和家庭间的混合;在封锁期间形成支持泡沫;家庭外隔离(OOHI);以及在假期期间暂时放松 NPI。我们的常微分方程公式和相关分析表明,无需牺牲数学可处理性,就可以将风险分层和社会结构的多个维度纳入传染病模型。该模型及其软件实现扩展了传染病政策分析师可用的工具范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd9f/9481179/6de04046df1c/pcbi.1010390.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验