Suppr超能文献

通过检索增强多阶段训练实现弱监督科学文献分类

Weakly-Supervised Scientific Document Classification via Retrieval-Augmented Multi-Stage Training.

作者信息

Xu Ran, Yu Yue, Ho Joyce, Yang Carl

机构信息

Emory University, Atlanta, GA, USA.

Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Int ACM SIGIR Conf Res Dev Inf Retr. 2023 Jul;2023:2501-2505. doi: 10.1145/3539618.3592085. Epub 2023 Jul 18.

Abstract

Scientific document classification is a critical task for a wide range of applications, but the cost of collecting human-labeled data can be prohibitive. We study scientific document classification using label names only. In scientific domains, label names often include domain-specific concepts that may not appear in the document corpus, making it difficult to match labels and documents precisely. To tackle this issue, we propose WanDeR, which leverages to perform matching in the embedding space to capture the semantics of label names. We further design the label name expansion module to enrich its representations. Lastly, a self-training step is used to refine the predictions. The experiments on three datasets show that WanDeR outperforms the best baseline by 11.9%. Our code will be published at https://github.com/ritaranx/wander.

摘要

科学文档分类对于广泛的应用来说是一项关键任务,但收集人工标注数据的成本可能过高。我们仅使用标签名称来研究科学文档分类。在科学领域,标签名称通常包含可能不会出现在文档语料库中的特定领域概念,这使得精确匹配标签和文档变得困难。为了解决这个问题,我们提出了WanDeR,它利用在嵌入空间中进行匹配来捕捉标签名称的语义。我们进一步设计了标签名称扩展模块以丰富其表示。最后,使用一个自训练步骤来优化预测。在三个数据集上的实验表明,WanDeR比最佳基线性能高出11.9%。我们的代码将发布在https://github.com/ritaranx/wander

相似文献

1
2
Neighborhood-Regularized Self-Training for Learning with Few Labels.用于少标签学习的邻域正则化自训练
Proc AAAI Conf Artif Intell. 2023 Jun 27;37(9):10611-10619. doi: 10.1609/aaai.v37i9.26260.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验