Xu Ran, Yu Yue, Ho Joyce, Yang Carl
Emory University, Atlanta, GA, USA.
Georgia Institute of Technology, Atlanta, GA, USA.
Int ACM SIGIR Conf Res Dev Inf Retr. 2023 Jul;2023:2501-2505. doi: 10.1145/3539618.3592085. Epub 2023 Jul 18.
Scientific document classification is a critical task for a wide range of applications, but the cost of collecting human-labeled data can be prohibitive. We study scientific document classification using label names only. In scientific domains, label names often include domain-specific concepts that may not appear in the document corpus, making it difficult to match labels and documents precisely. To tackle this issue, we propose WanDeR, which leverages to perform matching in the embedding space to capture the semantics of label names. We further design the label name expansion module to enrich its representations. Lastly, a self-training step is used to refine the predictions. The experiments on three datasets show that WanDeR outperforms the best baseline by 11.9%. Our code will be published at https://github.com/ritaranx/wander.
科学文档分类对于广泛的应用来说是一项关键任务,但收集人工标注数据的成本可能过高。我们仅使用标签名称来研究科学文档分类。在科学领域,标签名称通常包含可能不会出现在文档语料库中的特定领域概念,这使得精确匹配标签和文档变得困难。为了解决这个问题,我们提出了WanDeR,它利用在嵌入空间中进行匹配来捕捉标签名称的语义。我们进一步设计了标签名称扩展模块以丰富其表示。最后,使用一个自训练步骤来优化预测。在三个数据集上的实验表明,WanDeR比最佳基线性能高出11.9%。我们的代码将发布在https://github.com/ritaranx/wander 。