Division of Research, Kaiser Permanente Northern California, Oakland, California, USA.
Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Am J Gastroenterol. 2024 Aug 1;119(8):1590-1599. doi: 10.14309/ajg.0000000000002721. Epub 2024 Feb 14.
Colonoscopy surveillance guidelines categorize individuals as high or low risk for future colorectal cancer (CRC) based primarily on their prior polyp characteristics, but this approach is imprecise, and consideration of other risk factors may improve postpolypectomy risk stratification.
Among patients who underwent a baseline colonoscopy with removal of a conventional adenoma in 2004-2016, we compared the performance for postpolypectomy CRC risk prediction (through 2020) of a comprehensive model featuring patient age, diabetes diagnosis, and baseline colonoscopy indication and prior polyp findings (i.e., adenoma with advanced histology, polyp size ≥10 mm, and sessile serrated adenoma or traditional serrated adenoma) with a polyp model featuring only polyp findings. Models were developed using Cox regression. Performance was assessed using area under the receiver operating characteristic curve (AUC) and calibration by the Hosmer-Lemeshow goodness-of-fit test.
Among 95,001 patients randomly divided 70:30 into model development (n = 66,500) and internal validation cohorts (n = 28,501), 495 CRC were subsequently diagnosed; 354 in the development cohort and 141 in the validation cohort. Models demonstrated adequate calibration, and the comprehensive model demonstrated superior predictive performance to the polyp model in the development cohort (AUC 0.71, 95% confidence interval [CI] 0.68-0.74 vs AUC 0.61, 95% CI 0.58-0.64, respectively) and validation cohort (AUC 0.70, 95% CI 0.65-0.75 vs AUC 0.62, 95% CI 0.57-0.67, respectively).
A comprehensive CRC risk prediction model featuring patient age, diabetes diagnosis, and baseline colonoscopy indication and polyp findings was more accurate at predicting postpolypectomy CRC diagnosis than a model based on polyp findings alone.
结肠镜检查监测指南主要根据患者既往息肉特征,将个体分为高风险或低风险,以预测未来结直肠癌(CRC)发生的可能性。但这种方法并不精确,考虑其他风险因素可能会改善息肉切除术后的风险分层。
在 2004 年至 2016 年间进行基线结肠镜检查并切除常规腺瘤的患者中,我们比较了一种综合模型(包含患者年龄、糖尿病诊断、基线结肠镜检查适应证和既往息肉发现)与仅基于息肉发现的息肉模型在预测息肉切除术后 CRC 风险(至 2020 年)方面的表现。综合模型的特征包括患者年龄、糖尿病诊断、基线结肠镜检查适应证和既往息肉发现(即高级别组织学腺瘤、息肉大小≥10mm、无蒂锯齿状腺瘤或传统锯齿状腺瘤)。使用 Cox 回归建立模型。使用接受者操作特征曲线下面积(AUC)评估性能,并通过 Hosmer-Lemeshow 拟合优度检验评估校准。
在随机分为 70:30 的模型建立(n=66500)和内部验证队列(n=28501)的 95001 名患者中,随后诊断出 495 例 CRC;其中 354 例发生在发展队列中,141 例发生在验证队列中。模型显示出适当的校准能力,综合模型在发展队列(AUC 0.71,95%置信区间 [CI] 0.68-0.74 与 AUC 0.61,95%CI 0.58-0.64)和验证队列(AUC 0.70,95%CI 0.65-0.75 与 AUC 0.62,95%CI 0.57-0.67)中的预测性能均优于息肉模型。
一种综合 CRC 风险预测模型,包含患者年龄、糖尿病诊断、基线结肠镜检查适应证和息肉发现,比基于息肉发现的模型更能准确预测息肉切除术后 CRC 的诊断。