Hassan Ather, Jalil Abdul, Ilyas Syed Zafar, Iqbal Muhammad Faisal, Ali Shah Syed Zulfiqar, Baqir Yadullah
Department of Physics, Allama Iqbal Open University, Islamabad, Pakistan.
College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.
Heliyon. 2024 Feb 5;10(3):e25581. doi: 10.1016/j.heliyon.2024.e25581. eCollection 2024 Feb 15.
In the present work, Zinc-oxide nanostructures and Ce/Zinc-oxide nanopetals were synthesized by a new environmentally friendly green synthesis method using the Withania coagulans plant. Cerium nitrate Ce(NO) and zinc nitrate Zn(NO) were used as precursors. The prepared nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet spectroscopy (UV-vis). Crystal planes (100), (002), (101), (102), (110), (103), (200), (112) and (201) at 2θ 31.75°, 34.35°, 36.2°, 47.55°, 56.6°, 62.75°, 66.3°, 67.9°, and 69.09° respectively confirmed the hexagonal wurtzite crystal structure of Zinc-oxide. Angular shifts for Ce doped Zinc-oxide and Ce doped Zinc-oxide nanopetal nanostructures were observed in the (100) and (101) planes of the crystal. More specifically, using Scherrer's equation, the crystallite sizes of Zinc-oxide, Ce doped Zinc-oxide nanopetals, Ce doped Zinc-oxide nanopetals, and Ce doped Zinc-oxide nanopetals were 16.48 ± 02 nm, 17.8 ± 2 nm, 18.8 ± 2 nm, and 18.87 ± 2 nm, respectively. The pure Zinc-oxide grain had the appearance of a nanoflower. On the other hand, the nanopetal structure of Ce doped Zinc-oxide nanopetals had oval-shaped nanopetal morphology. The absorption peaks were observed at 373, 376.4, 377, and 378 nm for Zinc-oxide, Ce doped Zinc-oxide nanopetals, Ce doped Zinc-oxide nanopetals, and Ce doped Zinc-oxide nanopetals, respectively, which results in a progressive redshift. The gap energies of Zinc-oxide, Ce doped Zinc-oxide nanopetals, Ce doped Zinc-oxide nanopetals, and Ce doped Zinc-oxide nanopetals were 2.796, 2.645, 2.534, and 2.448 eV, respectively. Photodegradation under visible light (>400 nm) indicates the high efficiency of the photocatalyst based on Ce doped Zinc-oxide nanopetals. DFT calculations, structural changes, charge analysis, and electronic band structures were carried out to confirm the experiment.
在本工作中,采用一种使用凝固茄植物的新型环保绿色合成方法,合成了氧化锌纳米结构和铈/氧化锌纳米花瓣。硝酸铈Ce(NO)和硝酸锌Zn(NO)用作前驱体。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和紫外光谱(UV-vis)对制备的纳米结构进行了表征。2θ分别为31.75°、34.35°、36.2°、47.55°、56.6°、62.75°、66.3°、67.9°和69.09°处的晶面(100)、(002)、(101)、(102)、(110)、(103)、(200)、(112)和(201)分别证实了氧化锌的六方纤锌矿晶体结构。在晶体的(100)和(101)平面中观察到铈掺杂氧化锌和铈掺杂氧化锌纳米花瓣纳米结构的角位移。更具体地说,使用谢乐方程,氧化锌、铈掺杂氧化锌纳米花瓣、铈掺杂氧化锌纳米花瓣和铈掺杂氧化锌纳米花瓣的微晶尺寸分别为16.48±02nm、17.8±2nm、18.8±2nm和18.87±2nm。纯氧化锌晶粒呈现出纳米花的外观。另一方面,铈掺杂氧化锌纳米花瓣的纳米花瓣结构具有椭圆形的纳米花瓣形态。氧化锌、铈掺杂氧化锌纳米花瓣、铈掺杂氧化锌纳米花瓣和铈掺杂氧化锌纳米花瓣的吸收峰分别在373、376.4nm、377nm和378nm处观察到,这导致了逐渐的红移。氧化锌、铈掺杂氧化锌纳米花瓣、铈掺杂氧化锌纳米花瓣和铈掺杂氧化锌纳米花瓣的禁带能量分别为2.796eV、2.645eV,2.534eV和2.448eV。可见光(>400nm)下的光降解表明基于铈掺杂氧化锌纳米花瓣的光催化剂具有高效率。进行了密度泛函理论(DFT)计算、结构变化、电荷分析和电子能带结构分析以证实实验结果。