Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada.
Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106.
J Neurosci. 2024 Apr 3;44(14):e1291232024. doi: 10.1523/JNEUROSCI.1291-23.2024.
Growing evidence suggests a remarkable diversity and complexity in the molecular composition of synapses, forming the basis for the brain to execute complex behaviors. Hence, there is considerable interest in visualizing the spatial distribution of such molecular diversity at individual synapses within intact brain circuits. Yet this task presents significant technical challenges. Expansion microscopy approaches have revolutionized our view of molecular anatomy. However, their use to study synapse-related questions outside of the labs developing them has been limited. Here we independently adapted a version of Magnified Analysis of the Proteome (MAP) and present a step-by-step protocol for visualizing over 40 synaptic proteins in brain circuits. Surprisingly, our findings show that the advantage of MAP over conventional immunolabeling was primarily due to improved antigen recognition and secondarily physical expansion. Furthermore, we demonstrated the versatile use of MAP in brains perfused with paraformaldehyde or fresh-fixed with formalin and in formalin-fixed paraffin-embedded tissue. These tests expand the potential applications of MAP to combinations with slice electrophysiology or clinical pathology specimens. Using male and female mice expressing YFP-ChR2 exclusively in interneurons, we revealed a distinct composition of AMPA and NMDA receptors and Shank family members at synapses on hippocampal interneurons versus on pyramidal neurons. Quantitative single synapse analyses yielded comprehensive cell type distributions of synaptic proteins and their relationships. These findings exemplify the value of the versatile adapted MAP procedure presented here as an accessible tool for the broad neuroscience community to unravel the complexity of the "synaptome" across brain circuits and disease states.
越来越多的证据表明,突触的分子组成具有显著的多样性和复杂性,为大脑执行复杂行为奠定了基础。因此,人们非常感兴趣的是在完整的大脑回路中的单个突触中可视化这种分子多样性的空间分布。然而,这项任务存在很大的技术挑战。扩展显微镜方法彻底改变了我们对分子解剖学的看法。然而,它们在开发这些方法的实验室之外用于研究与突触相关的问题的应用受到了限制。在这里,我们独立地改编了放大分析蛋白质组学(MAP)的一个版本,并提供了一个逐步的方案,用于可视化大脑回路中的 40 多种突触蛋白。令人惊讶的是,我们的发现表明,MAP 相对于传统免疫标记的优势主要归因于抗原识别的改善,其次是物理扩展。此外,我们证明了 MAP 在灌注多聚甲醛或新鲜固定的甲醛以及固定在福尔马林中的石蜡包埋组织中的广泛应用。这些测试将 MAP 的潜在应用扩展到与切片电生理学或临床病理学标本的结合。使用仅在中间神经元中表达 YFP-ChR2 的雄性和雌性小鼠,我们揭示了在海马中间神经元上的突触与在锥体神经元上的突触相比,AMPA 和 NMDA 受体以及 Shank 家族成员的明显组成。定量的单个突触分析产生了突触蛋白及其关系的全面细胞类型分布。这些发现体现了灵活适应的 MAP 程序的价值,该程序作为一种易于使用的工具,为广大神经科学界提供了一种方法,可以揭示整个大脑回路和疾病状态下的“突触组”的复杂性。