Wen Qifeng, Chen JinJin, Li Jin, Dharmasiddhi Ida Putu Wiweka, Yang Maohua, Xing Jianmin, Liu Yilan
State Key Laboratory of Petroleum Molecular & Process Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China.
Microb Cell Fact. 2024 Dec 30;23(1):349. doi: 10.1186/s12934-024-02634-4.
Pseudomonas putida KT2440, a non-pathogenic soil bacterium, is a key platform strain in synthetic biology and industrial applications due to its robustness and metabolic versatility. Various systems have been developed for genome editing in P. putida, including transposon modules, integrative plasmids, recombineering systems, and CRISPR/Cas systems. However, rapid iterative genome editing is limited by complex and lengthy processes.
We discovered that the pBBR1MCS2 plasmid carrying the CRISPR/Cas9 module could be easily cured in P. putida KT2440 at 30 C. We then developed an all-in-one CRISPR/Cas9 system for yqhD and ech-vdh-fcs deletions, respectively, and further optimized the editing efficiency by varying homology arm lengths and target sites. Sequential gene deletions of vdh and vanAB were carried out rapidly using single-round processing and easy plasmid curing. This system's user-friendliness was validated by 3 researchers from two labs for 9 deletions, 3 substitutions, and 2 insertions. Finally, iterative genome editing was used to engineer P. putida for valencene biosynthesis, achieving a 10-fold increase in yield.
We developed and applied a rapid all-in-one plasmid CRISPR/Cas9 system for genome editing in P. putida. This system requires less than 1.5 days for one edit due to simplified plasmid construction, electroporation and curing processes, thus accelerating the cycle of genome editing. To our knowledge, this is the fastest iterative genome editing system for P. putida. Using this system, we rapidly engineered P. putida for valencene biosynthesis for the first time, showcasing the system's potential for expanding biotechnological applications.
恶臭假单胞菌KT2440是一种非致病性土壤细菌,因其强大的适应性和代谢多样性,成为合成生物学和工业应用中的关键平台菌株。已开发出多种用于恶臭假单胞菌基因组编辑的系统,包括转座子模块、整合质粒、重组工程系统和CRISPR/Cas系统。然而,快速迭代基因组编辑受到复杂且冗长过程的限制。
我们发现携带CRISPR/Cas9模块的pBBR1MCS2质粒在30℃下可在恶臭假单胞菌KT2440中轻松消除。然后,我们分别开发了用于yqhD和ech-vdh-fcs缺失的一体化CRISPR/Cas9系统,并通过改变同源臂长度和靶位点进一步优化编辑效率。使用单轮处理和简便的质粒消除方法,快速进行了vdh和vanAB的连续基因缺失。来自两个实验室的3名研究人员对该系统进行了9次缺失、3次替换和2次插入操作,验证了其用户友好性。最后,通过迭代基因组编辑对恶臭假单胞菌进行了工程改造以用于瓦伦烯生物合成,产量提高了10倍。
我们开发并应用了一种快速一体化质粒CRISPR/Cas9系统用于恶臭假单胞菌的基因组编辑。由于简化了质粒构建、电穿孔和消除过程,该系统每次编辑所需时间不到1.5天,从而加速了基因组编辑周期。据我们所知,这是用于恶臭假单胞菌的最快的迭代基因组编辑系统。利用该系统,我们首次快速对恶臭假单胞菌进行了工程改造以用于瓦伦烯生物合成,展示了该系统在扩展生物技术应用方面的潜力。