文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从残基到增值细菌生物聚合物:作为生物医学应用纳米材料

From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications.

作者信息

Blanco Francisco G, Hernández Natalia, Rivero-Buceta Virginia, Maestro Beatriz, Sanz Jesús M, Mato Aránzazu, Hernández-Arriaga Ana M, Prieto M Auxiliadora

机构信息

Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain.

Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain.

出版信息

Nanomaterials (Basel). 2021 Jun 4;11(6):1492. doi: 10.3390/nano11061492.


DOI:10.3390/nano11061492
PMID:34200068
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8228158/
Abstract

Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.

摘要

细菌生物聚合物是天然存在的材料,由多种具有不同化学结构的分子组成,这些分子可以按照循环经济原则从可再生资源中生产出来。在过去几十年中,由于其固有的生物相容性、可生物降解为无害分解产物以及与人体组织相似的机械性能,它们在生物医学领域作为药物纳米载体、可植入材料涂层以及组织再生支架或膜受到了广泛关注。本综述重点关注三种技术先进的细菌生物聚合物,即细菌纤维素(BC)、聚羟基脂肪酸酯(PHA)和γ-聚谷氨酸(PGA),它们是细菌产生的具有不同碳骨架结构(多糖、聚酯和聚酰胺)的模型,适用于纳米级系统中的生物医学应用。这种选择展示了微生物通过多种代谢策略生成生物聚合物的广泛通用性。我们强调基于可再生碳源生产BC、PHA和PGA的应用可持续生物过程的适用性,以及由细菌机制驱动的每个过程的独特性。每种聚合物的固有特性可以通过化学和生物技术方法进行微调,如代谢工程和肽功能化,以进一步扩大其结构多样性及其作为生物医学纳米材料的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a3/8228158/0a3081c567a2/nanomaterials-11-01492-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a3/8228158/f55c634f14c9/nanomaterials-11-01492-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a3/8228158/8c155186e0d2/nanomaterials-11-01492-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a3/8228158/b82e5a672dd2/nanomaterials-11-01492-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a3/8228158/59218b7412cb/nanomaterials-11-01492-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a3/8228158/6b5fe7f45883/nanomaterials-11-01492-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a3/8228158/0a3081c567a2/nanomaterials-11-01492-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a3/8228158/f55c634f14c9/nanomaterials-11-01492-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a3/8228158/8c155186e0d2/nanomaterials-11-01492-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a3/8228158/b82e5a672dd2/nanomaterials-11-01492-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a3/8228158/59218b7412cb/nanomaterials-11-01492-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a3/8228158/6b5fe7f45883/nanomaterials-11-01492-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a3/8228158/0a3081c567a2/nanomaterials-11-01492-g006.jpg

相似文献

[1]
From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications.

Nanomaterials (Basel). 2021-6-4

[2]
Film forming microbial biopolymers for commercial applications--a review.

Crit Rev Biotechnol. 2014-12

[3]
Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future.

Crit Rev Biotechnol. 2022-8

[4]
Polyhydroxyalkanoates as biomaterial for electrospun scaffolds.

Int J Biol Macromol. 2018-11-13

[5]
Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry.

Molecules. 2022-11-30

[6]
Biomedical applications of microbially engineered polyhydroxyalkanoates: an insight into recent advances, bottlenecks, and solutions.

Appl Microbiol Biotechnol. 2019-1-15

[7]
Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters.

Metab Eng. 2020-3

[8]
Polylactic acid: synthesis and biomedical applications.

J Appl Microbiol. 2019-6-17

[9]
A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose.

Carbohydr Polym. 2016-7-19

[10]
Bacterial polyhydroxyalkanoates: Still fabulous?

Microbiol Res. 2016-11

引用本文的文献

[1]
Complexation and Thermal Stabilization of Protein-Polyelectrolyte Systems via Experiments and Molecular Simulations: The Poly(acrylic acid)/Lysozyme Case.

Polymers (Basel). 2025-8-1

[2]
Microbes Saving Lives and Reducing Suffering.

Microb Biotechnol. 2025-1

[3]
Bio-upcycling of even and uneven medium-chain-length diols and dicarboxylates to polyhydroxyalkanoates using engineered Pseudomonas putida.

Microb Cell Fact. 2024-2-16

[4]
An introductory review on advanced multifunctional materials.

Heliyon. 2023-7-8

[5]
Enzybiotic-mediated antimicrobial functionalization of polyhydroxyalkanoates.

Front Bioeng Biotechnol. 2023-6-28

[6]
Using runaway replication to express polyhydroxyalkanoic acid (pha) genes from a novel marine bacterium in enteric bacteria: The influence of temperature and phasins on PHA accumulation.

PLoS One. 2022

[7]
Cellulose-Based Nanomaterials Advance Biomedicine: A Review.

Int J Mol Sci. 2022-5-12

[8]
Review of the Developments of Bacterial Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHAs).

Bioengineering (Basel). 2022-5-21

[9]
Comparative Analysis of Bacterial Cellulose Membranes Synthesized by Chosen Strains and Their Application Potential.

Int J Mol Sci. 2022-3-21

[10]
Bacterial Cellulose Properties Fulfilling Requirements for a Biomaterial of Choice in Reconstructive Surgery and Wound Healing.

Front Bioeng Biotechnol. 2022-2-11

本文引用的文献

[1]
A Review on Surface-Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials.

Nanomicro Lett. 2020-3-14

[2]
Nanomaterials for Protein Delivery in Anticancer Applications.

Pharmaceutics. 2021-1-25

[3]
Influence of Cross-Linking on the Physical Properties and Cytotoxicity of Polyhydroxyalkanoate (PHA) Scaffolds for Tissue Engineering.

ACS Biomater Sci Eng. 2015-7-13

[4]
Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents.

Chem Soc Rev. 2021-2-15

[5]
The evolution of polymer conjugation and drug targeting for the delivery of proteins and bioactive molecules.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021-5

[6]
The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices.

Front Bioeng Biotechnol. 2020-11-11

[7]
Nanomaterials for Treating Bacterial Biofilms on Implantable Medical Devices.

Nanomaterials (Basel). 2020-11-13

[8]
Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates.

Biotechnol J. 2021-3

[9]
Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016.

Int J Biol Macromol. 2020-11-1

[10]
Anti-staphylococcal hydrogels based on bacterial cellulose and the antimicrobial biopolyester poly(3-hydroxy-acetylthioalkanoate-co-3-hydroxyalkanoate).

Int J Biol Macromol. 2020-11-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索