Blanco Francisco G, Hernández Natalia, Rivero-Buceta Virginia, Maestro Beatriz, Sanz Jesús M, Mato Aránzazu, Hernández-Arriaga Ana M, Prieto M Auxiliadora
Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain.
Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain.
Nanomaterials (Basel). 2021 Jun 4;11(6):1492. doi: 10.3390/nano11061492.
Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.
细菌生物聚合物是天然存在的材料,由多种具有不同化学结构的分子组成,这些分子可以按照循环经济原则从可再生资源中生产出来。在过去几十年中,由于其固有的生物相容性、可生物降解为无害分解产物以及与人体组织相似的机械性能,它们在生物医学领域作为药物纳米载体、可植入材料涂层以及组织再生支架或膜受到了广泛关注。本综述重点关注三种技术先进的细菌生物聚合物,即细菌纤维素(BC)、聚羟基脂肪酸酯(PHA)和γ-聚谷氨酸(PGA),它们是细菌产生的具有不同碳骨架结构(多糖、聚酯和聚酰胺)的模型,适用于纳米级系统中的生物医学应用。这种选择展示了微生物通过多种代谢策略生成生物聚合物的广泛通用性。我们强调基于可再生碳源生产BC、PHA和PGA的应用可持续生物过程的适用性,以及由细菌机制驱动的每个过程的独特性。每种聚合物的固有特性可以通过化学和生物技术方法进行微调,如代谢工程和肽功能化,以进一步扩大其结构多样性及其作为生物医学纳米材料的适用性。
Nanomaterials (Basel). 2021-6-4
Crit Rev Biotechnol. 2014-12
Crit Rev Biotechnol. 2022-8
Int J Biol Macromol. 2018-11-13
Appl Microbiol Biotechnol. 2019-1-15
J Appl Microbiol. 2019-6-17
Carbohydr Polym. 2016-7-19
Microbiol Res. 2016-11
Microb Biotechnol. 2025-1
Heliyon. 2023-7-8
Front Bioeng Biotechnol. 2023-6-28
Int J Mol Sci. 2022-5-12
Bioengineering (Basel). 2022-5-21
Front Bioeng Biotechnol. 2022-2-11
Pharmaceutics. 2021-1-25
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021-5
Front Bioeng Biotechnol. 2020-11-11
Nanomaterials (Basel). 2020-11-13