文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

细胞间连线使产甲烷古菌和细菌之间能够进行电子转移。

Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.

机构信息

Max-Planck Institute for Marine Microbiology, 28359 Bremen, Germany.

MARUM, Center for Marine Environmental Sciences, University Bremen, 28359 Bremen, Germany.

出版信息

Nature. 2015 Oct 22;526(7574):587-90. doi: 10.1038/nature15733.


DOI:10.1038/nature15733
PMID:26490622
Abstract

The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. In marine sediments, AOM is performed by dual-species consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) inhabiting the methane-sulfate transition zone. The biochemical pathways and biological adaptations enabling this globally relevant process are not fully understood. Here we study the syntrophic interaction in thermophilic AOM (TAOM) between ANME-1 archaea and their consortium partner SRB HotSeep-1 (ref. 6) at 60 °C to test the hypothesis of a direct interspecies exchange of electrons. The activity of TAOM consortia was compared to the first ANME-free culture of an AOM partner bacterium that grows using hydrogen as the sole electron donor. The thermophilic ANME-1 do not produce sufficient hydrogen to sustain the observed growth of the HotSeep-1 partner. Enhancing the growth of the HotSeep-1 partner by hydrogen addition represses methane oxidation and the metabolic activity of ANME-1. Further supporting the hypothesis of direct electron transfer between the partners, we observe that under TAOM conditions, both ANME and the HotSeep-1 bacteria overexpress genes for extracellular cytochrome production and form cell-to-cell connections that resemble the nanowire structures responsible for interspecies electron transfer between syntrophic consortia of Geobacter. HotSeep-1 highly expresses genes for pili production only during consortial growth using methane, and the nanowire-like structures are absent in HotSeep-1 cells isolated with hydrogen. These observations suggest that direct electron transfer is a principal mechanism in TAOM, which may also explain the enigmatic functioning and specificity of other methanotrophic ANME-SRB consortia.

摘要

甲烷的厌氧氧化(AOM)与硫酸盐共同控制着海底甲烷这种温室气体的排放。在海洋沉积物中,AOM 是由栖息在甲烷-硫酸盐过渡带的厌氧甲烷氧化古菌(ANME)和硫酸盐还原菌(SRB)组成的双物种共生体完成的。使这一具有全球相关性的过程能够进行的生物化学途径和生物适应性尚未被完全理解。在这里,我们在 60°C 下研究了嗜热 AOM(TAOM)中 ANME-1 古菌与其共生伙伴 SRB HotSeep-1(参考文献 6)之间的协同相互作用,以检验电子直接种间交换的假说。我们将 TAOM 共生体的活性与第一个 ANME 自由的 AOM 伙伴细菌的培养物进行了比较,该细菌仅使用氢气作为唯一电子供体进行生长。嗜热 ANME-1 不能产生足够的氢气来维持观察到的 HotSeep-1 伙伴的生长。通过添加氢气来增强 HotSeep-1 伙伴的生长会抑制甲烷氧化和 ANME-1 的代谢活性。进一步支持伙伴之间直接电子转移的假说,我们观察到在 TAOM 条件下,ANME 和 HotSeep-1 细菌都过度表达了细胞外细胞色素产生的基因,并形成了类似于负责协同共生体之间种间电子转移的纳米线结构的细胞间连接。HotSeep-1 仅在使用甲烷进行共生生长时高度表达菌毛产生基因,而在使用氢气分离的 HotSeep-1 细胞中不存在纳米线样结构。这些观察结果表明,直接电子转移是 TAOM 的主要机制,这也可能解释了其他甲烷氧化 ANME-SRB 共生体的神秘功能和特异性。

相似文献

[1]
Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.

Nature. 2015-10-22

[2]
Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea.

mBio. 2017-8-1

[3]
Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia.

Environ Microbiol. 2018-4-11

[4]
Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep.

Appl Environ Microbiol. 2022-6-14

[5]
Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane.

Environ Microbiol. 2016-9

[6]
Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea.

Appl Environ Microbiol. 2019-3-22

[7]
Thermophilic anaerobic oxidation of methane by marine microbial consortia.

ISME J. 2011-6-23

[8]
Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS.

Environ Microbiol. 2009-4-6

[9]
Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane.

Front Microbiol. 2016-2-2

[10]
Physiological potential and evolutionary trajectories of syntrophic sulfate-reducing bacterial partners of anaerobic methanotrophic archaea.

PLoS Biol. 2023-9

引用本文的文献

[1]
Atomic resolution structures of the methane-activating enzyme in anaerobic methanotrophy reveal extensive post-translational modifications.

Nat Commun. 2025-9-5

[2]
Redox conduction facilitates direct interspecies electron transport in anaerobic methanotrophic consortia.

Sci Adv. 2025-8-22

[3]
Comparative transcriptomics analysis of the G20 biofilms grown on copper and polycarbonate surfaces.

Biofilm. 2025-8-6

[4]
DPANN Archaea and CPR Bacteria: insights into early cellular evolution?

Philos Trans R Soc Lond B Biol Sci. 2025-8-7

[5]
Exploring Energy Conservation in Sulphate-Dependent Anaerobic Methane-Oxidising Consortia Through Metabolic Modelling.

Environ Microbiol. 2025-7

[6]
Methanotrophic Flexibility of 'Ca. Methanoperedens' and Its Interactions With Sulphate-Reducing Bacteria in the Sediment of Meromictic Lake Cadagno.

Environ Microbiol. 2025-7

[7]
Identification of key steps in the evolution of anaerobic methanotrophy in Methanovorans (ANME-3) archaea.

Sci Adv. 2025-6-20

[8]
Salinization alters microbial methane cycling in freshwater sediments.

Environ Microbiome. 2025-6-17

[9]
Isolation and characterization of a bacterium affiliated with the hitherto uncultured candidate phylum WOR-3 from a deep-sea hydrothermal fluid.

Appl Environ Microbiol. 2025-7-23

[10]
Analysis of Mechanisms for Electron Uptake by 6Ac During Direct Interspecies Electron Transfer.

Int J Mol Sci. 2025-4-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索