Max-Planck Institute for Marine Microbiology, 28359 Bremen, Germany.
MARUM, Center for Marine Environmental Sciences, University Bremen, 28359 Bremen, Germany.
Nature. 2015 Oct 22;526(7574):587-90. doi: 10.1038/nature15733.
The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. In marine sediments, AOM is performed by dual-species consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) inhabiting the methane-sulfate transition zone. The biochemical pathways and biological adaptations enabling this globally relevant process are not fully understood. Here we study the syntrophic interaction in thermophilic AOM (TAOM) between ANME-1 archaea and their consortium partner SRB HotSeep-1 (ref. 6) at 60 °C to test the hypothesis of a direct interspecies exchange of electrons. The activity of TAOM consortia was compared to the first ANME-free culture of an AOM partner bacterium that grows using hydrogen as the sole electron donor. The thermophilic ANME-1 do not produce sufficient hydrogen to sustain the observed growth of the HotSeep-1 partner. Enhancing the growth of the HotSeep-1 partner by hydrogen addition represses methane oxidation and the metabolic activity of ANME-1. Further supporting the hypothesis of direct electron transfer between the partners, we observe that under TAOM conditions, both ANME and the HotSeep-1 bacteria overexpress genes for extracellular cytochrome production and form cell-to-cell connections that resemble the nanowire structures responsible for interspecies electron transfer between syntrophic consortia of Geobacter. HotSeep-1 highly expresses genes for pili production only during consortial growth using methane, and the nanowire-like structures are absent in HotSeep-1 cells isolated with hydrogen. These observations suggest that direct electron transfer is a principal mechanism in TAOM, which may also explain the enigmatic functioning and specificity of other methanotrophic ANME-SRB consortia.
甲烷的厌氧氧化(AOM)与硫酸盐共同控制着海底甲烷这种温室气体的排放。在海洋沉积物中,AOM 是由栖息在甲烷-硫酸盐过渡带的厌氧甲烷氧化古菌(ANME)和硫酸盐还原菌(SRB)组成的双物种共生体完成的。使这一具有全球相关性的过程能够进行的生物化学途径和生物适应性尚未被完全理解。在这里,我们在 60°C 下研究了嗜热 AOM(TAOM)中 ANME-1 古菌与其共生伙伴 SRB HotSeep-1(参考文献 6)之间的协同相互作用,以检验电子直接种间交换的假说。我们将 TAOM 共生体的活性与第一个 ANME 自由的 AOM 伙伴细菌的培养物进行了比较,该细菌仅使用氢气作为唯一电子供体进行生长。嗜热 ANME-1 不能产生足够的氢气来维持观察到的 HotSeep-1 伙伴的生长。通过添加氢气来增强 HotSeep-1 伙伴的生长会抑制甲烷氧化和 ANME-1 的代谢活性。进一步支持伙伴之间直接电子转移的假说,我们观察到在 TAOM 条件下,ANME 和 HotSeep-1 细菌都过度表达了细胞外细胞色素产生的基因,并形成了类似于负责协同共生体之间种间电子转移的纳米线结构的细胞间连接。HotSeep-1 仅在使用甲烷进行共生生长时高度表达菌毛产生基因,而在使用氢气分离的 HotSeep-1 细胞中不存在纳米线样结构。这些观察结果表明,直接电子转移是 TAOM 的主要机制,这也可能解释了其他甲烷氧化 ANME-SRB 共生体的神秘功能和特异性。
Environ Microbiol. 2018-4-11
Appl Environ Microbiol. 2022-6-14
Appl Environ Microbiol. 2019-3-22
Philos Trans R Soc Lond B Biol Sci. 2025-8-7
Environ Microbiome. 2025-6-17
Int J Mol Sci. 2025-4-28