Suppr超能文献

厌氧甲烷氧化中甲烷活化酶的原子分辨率结构揭示了广泛的翻译后修饰。

Atomic resolution structures of the methane-activating enzyme in anaerobic methanotrophy reveal extensive post-translational modifications.

作者信息

Müller Marie-C, Wissink Martijn, Mukherjee Priyadarshini, Von Possel Nicole, Laso-Pérez Rafael, Engilberge Sylvain, Carpentier Philippe, Kahnt Jörg, Wegener Gunter, Welte Cornelia U, Wagner Tristan

机构信息

Max-Planck-Institute for Marine Microbiology, Bremen, Germany.

Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands.

出版信息

Nat Commun. 2025 Sep 5;16(1):8229. doi: 10.1038/s41467-025-63387-1.

Abstract

Anaerobic methanotrophic archaea (ANME) are crucial to planetary carbon cycling. They oxidise methane in anoxic niches by transferring electrons to nitrate, metal oxides, or sulfate-reducing bacteria. No ANMEs have been isolated, hampering the biochemical investigation of anaerobic methane oxidation. Here, we obtained the true atomic resolution structure of their methane-capturing system (Methyl-Coenzyme M Reductase, MCR), circumventing the isolation barrier by exploiting microbial enrichments of freshwater nitrate-reducing ANME-2d grown in bioreactors, and marine ANME-2c in syntrophy with bacterial partners. Despite their physiological differences, these ANMEs have extremely conserved MCR structures, similar to homologs from methanogenic Methanosarcinales, rather than the phylogenetically distant MCR of ANME-1 isolated from Black Sea mats. The three studied enzymes have seven post-translational modifications, among them was a novel 3(S)-methylhistidine on the γ-chain of both ANME-2d MCRs. Labelling with gaseous krypton did not reveal any internal channels that would facilitate alkane diffusion to the active site, as observed in the ethane-specialised enzyme. Based on our data, the methanotrophic MCRs should follow the same radical reaction mechanism proposed for the methane-generating homologues. The described pattern of post-translational modifications underscores the importance of native purification as a powerful approach to discovering intrinsic enzymatic features in non-isolated microorganisms existing in nature.

摘要

厌氧甲烷氧化古菌(ANME)对全球碳循环至关重要。它们通过将电子转移至硝酸盐、金属氧化物或硫酸盐还原细菌,在缺氧环境中氧化甲烷。目前尚未分离出任何ANME,这阻碍了对厌氧甲烷氧化的生化研究。在此,我们获得了它们甲烷捕获系统(甲基辅酶M还原酶,MCR)的真实原子分辨率结构,通过利用在生物反应器中生长的淡水硝酸盐还原ANME-2d以及与细菌伙伴共生的海洋ANME-2c的微生物富集物,绕过了分离障碍。尽管它们在生理上存在差异,但这些ANME具有极其保守的MCR结构,类似于产甲烷的甲烷八叠球菌目同源物,而非从黑海席中分离出的系统发育关系较远的ANME-1的MCR。所研究的三种酶有七种翻译后修饰,其中在两种ANME-2d MCR的γ链上有一种新的3(S)-甲基组氨酸。与乙烷特异性酶不同,用气态氪标记未发现任何有助于烷烃扩散至活性位点的内部通道。基于我们的数据,甲烷氧化MCR应遵循为产甲烷同源物提出的相同自由基反应机制。所描述的翻译后修饰模式强调了天然纯化作为一种强大方法的重要性,可用于发现自然界中未分离微生物的内在酶学特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验