Suppr超能文献

学习神经外科手术中术中配准的预期表现。

Learning Expected Appearances for Intraoperative Registration during Neurosurgery.

作者信息

Haouchine Nazim, Dorent Reuben, Juvekar Parikshit, Torio Erickson, Wells William M, Kapur Tina, Golby Alexandra J, Frisken Sarah

机构信息

Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.

Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Med Image Comput Comput Assist Interv. 2023 Oct;14228:227-237. doi: 10.1007/978-3-031-43996-4_22. Epub 2023 Oct 1.

Abstract

We present a novel method for intraoperative patient-to-image registration by learning Expected Appearances. Our method uses preoperative imaging to synthesize patient-specific expected views through a surgical microscope for a predicted range of transformations. Our method estimates the camera pose by minimizing the dissimilarity between the intraoperative 2D view through the optical microscope and the synthesized expected texture. In contrast to conventional methods, our approach transfers the processing tasks to the preoperative stage, reducing thereby the impact of low-resolution, distorted, and noisy intraoperative images, that often degrade the registration accuracy. We applied our method in the context of neuronavigation during brain surgery. We evaluated our approach on synthetic data and on retrospective data from 6 clinical cases. Our method outperformed state-of-the-art methods and achieved accuracies that met current clinical standards.

摘要

我们提出了一种通过学习预期外观进行术中患者与图像配准的新方法。我们的方法利用术前成像,通过手术显微镜针对预测的变换范围合成患者特定的预期视图。我们的方法通过最小化光学显微镜下的术中二维视图与合成的预期纹理之间的差异来估计相机姿态。与传统方法相比,我们的方法将处理任务转移到术前阶段,从而减少了低分辨率、失真和有噪声的术中图像的影响,这些图像常常会降低配准精度。我们在脑外科手术的神经导航背景下应用了我们的方法。我们在合成数据和来自6个临床病例的回顾性数据上评估了我们的方法。我们的方法优于现有方法,并达到了符合当前临床标准的精度。

相似文献

1
Learning Expected Appearances for Intraoperative Registration during Neurosurgery.
Med Image Comput Comput Assist Interv. 2023 Oct;14228:227-237. doi: 10.1007/978-3-031-43996-4_22. Epub 2023 Oct 1.
2
Fusion and visualization of intraoperative cortical images with preoperative models for epilepsy surgical planning and guidance.
Comput Aided Surg. 2011;16(4):149-60. doi: 10.3109/10929088.2011.585805. Epub 2011 Jun 13.
3
Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.
J Neurosurg. 2015 Jul;123(1):206-11. doi: 10.3171/2014.9.JNS141001. Epub 2015 Mar 6.
6
Compensation of geometric distortion effects on intraoperative magnetic resonance imaging for enhanced visualization in image-guided neurosurgery.
Neurosurgery. 2008 Mar;62(3 Suppl 1):209-15; discussion 215-6. doi: 10.1227/01.neu.0000317395.08466.e6.
7
Gesture-based registration correction using a mobile augmented reality image-guided neurosurgery system.
Healthc Technol Lett. 2018 Sep 27;5(5):137-142. doi: 10.1049/htl.2018.5063. eCollection 2018 Oct.
8
Adaptive Physics-Based Non-Rigid Registration for Immersive Image-Guided Neuronavigation Systems.
Front Digit Health. 2021 Feb 18;2:613608. doi: 10.3389/fdgth.2020.613608. eCollection 2020.
9
Multi-perspective region-based CNNs for vertebrae labeling in intraoperative long-length images.
Comput Methods Programs Biomed. 2022 Dec;227:107222. doi: 10.1016/j.cmpb.2022.107222. Epub 2022 Nov 3.

引用本文的文献

1
A survey on deep learning in medical image registration: New technologies, uncertainty, evaluation metrics, and beyond.
Med Image Anal. 2025 Feb;100:103385. doi: 10.1016/j.media.2024.103385. Epub 2024 Nov 10.

本文引用的文献

1
GANs for Medical Image Synthesis: An Empirical Study.
J Imaging. 2023 Mar 16;9(3):69. doi: 10.3390/jimaging9030069.
2
Surgical data science - from concepts toward clinical translation.
Med Image Anal. 2022 Feb;76:102306. doi: 10.1016/j.media.2021.102306. Epub 2021 Nov 18.
3
Pose Estimation and Non-Rigid Registration for Augmented Reality During Neurosurgery.
IEEE Trans Biomed Eng. 2022 Apr;69(4):1310-1317. doi: 10.1109/TBME.2021.3113841. Epub 2022 Mar 18.
4
Deformation Aware Augmented Reality for Craniotomy using 3D/2D Non-rigid Registration of Cortical Vessels.
Med Image Comput Comput Assist Interv. 2020 Oct;12264:735-744. doi: 10.1007/978-3-030-59719-1_71. Epub 2020 Sep 29.
5
A comparison of thin-plate spline deformation and finite element modeling to compensate for brain shift during tumor resection.
Int J Comput Assist Radiol Surg. 2020 Jan;15(1):75-85. doi: 10.1007/s11548-019-02057-2. Epub 2019 Aug 23.
6
Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching.
Int J Comput Assist Radiol Surg. 2018 Oct;13(10):1525-1538. doi: 10.1007/s11548-018-1786-7. Epub 2018 Jun 4.
7
Volumetric Measurements of Brain Shift Using Intraoperative Cone-Beam Computed Tomography: Preliminary Study.
Oper Neurosurg (Hagerstown). 2016 Mar 1;12(1):4-13. doi: 10.1227/NEU.0000000000000999.
8
Marker-less tracking of brain surface deformations by non-rigid registration integrating surface and vessel/sulci features.
Int J Comput Assist Radiol Surg. 2016 Sep;11(9):1687-701. doi: 10.1007/s11548-016-1358-7. Epub 2016 Mar 5.
9
Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study.
Int J Comput Assist Radiol Surg. 2015 Nov;10(11):1753-64. doi: 10.1007/s11548-015-1216-z. Epub 2015 May 10.
10
Near Real-Time Computer Assisted Surgery for Brain Shift Correction Using Biomechanical Models.
IEEE J Transl Eng Health Med. 2014 Apr 30;2. doi: 10.1109/JTEHM.2014.2327628.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验