Suppr超能文献

用于医学图像合成的生成对抗网络:一项实证研究。

GANs for Medical Image Synthesis: An Empirical Study.

作者信息

Skandarani Youssef, Jodoin Pierre-Marc, Lalande Alain

机构信息

ImViA Laboratory, University of Bourgogne Franche-Comte, 21000 Dijon, France.

CASIS Inc., 21800 Quetigny, France.

出版信息

J Imaging. 2023 Mar 16;9(3):69. doi: 10.3390/jimaging9030069.

Abstract

Generative adversarial networks (GANs) have become increasingly powerful, generating mind-blowing photorealistic images that mimic the content of datasets they have been trained to replicate. One recurrent theme in medical imaging, is whether GANs can also be as effective at generating workable medical data, as they are for generating realistic RGB images. In this paper, we perform a multi-GAN and multi-application study, to gauge the benefits of GANs in medical imaging. We tested various GAN architectures, from basic DCGAN to more sophisticated style-based GANs, on three medical imaging modalities and organs, namely: cardiac cine-MRI, liver CT, and RGB retina images. GANs were trained on well-known and widely utilized datasets, from which their FID scores were computed, to measure the visual acuity of their generated images. We further tested their usefulness by measuring the segmentation accuracy of a U-Net trained on these generated images and the original data. The results reveal that GANs are far from being equal, as some are ill-suited for medical imaging applications, while others performed much better. The top-performing GANs are capable of generating realistic-looking medical images by FID standards, that can fool trained experts in a visual Turing test and comply to some metrics. However, segmentation results suggest that no GAN is capable of reproducing the full richness of medical datasets.

摘要

生成对抗网络(GANs)已经变得越来越强大,能够生成令人惊叹的逼真图像,这些图像模仿了它们被训练来复制的数据集的内容。医学成像中一个反复出现的主题是,GANs在生成可行的医学数据方面是否也能像生成逼真的RGB图像一样有效。在本文中,我们进行了一项多GAN和多应用研究,以评估GANs在医学成像中的优势。我们在三种医学成像模态和器官上测试了各种GAN架构,从基本的深度卷积生成对抗网络(DCGAN)到更复杂的基于风格的GANs,这三种模态和器官分别是:心脏电影磁共振成像(cine-MRI)、肝脏计算机断层扫描(CT)和RGB视网膜图像。GANs在知名且广泛使用的数据集上进行训练,并计算它们的弗雷歇 inception 距离(FID)分数,以衡量其生成图像的视觉清晰度。我们通过测量在这些生成图像和原始数据上训练的U-Net的分割准确率,进一步测试了它们的实用性。结果表明,GANs远非等同,因为有些并不适合医学成像应用,而其他的表现则要好得多。表现最佳的GANs能够根据FID标准生成看似逼真的医学图像,在视觉图灵测试中能够骗过训练有素的专家,并且符合一些指标。然而,分割结果表明,没有一个GAN能够再现医学数据集的全部丰富性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c3a/10055771/6e9a49400ce3/jimaging-09-00069-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验