Lv Tongxuan, Zhang Ying, Li Mei, Kang Qiang, Fang Shuangsang, Zhang Yong, Brix Susanne, Xu Xun
BGI Research, Shenzhen 518083, China.
College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
Gigascience. 2024 Jan 2;13(1). doi: 10.1093/gigascience/giad097.
The emergence of high-resolved spatial transcriptomics (ST) has facilitated the research of novel methods to investigate biological development, organism growth, and other complex biological processes. However, high-resolved and whole transcriptomics ST datasets require customized imputation methods to improve the signal-to-noise ratio and the data quality.
We propose an efficient and adaptive Gaussian smoothing (EAGS) imputation method for high-resolved ST. The adaptive 2-factor smoothing of EAGS creates patterns based on the spatial and expression information of the cells, creates adaptive weights for the smoothing of cells in the same pattern, and then utilizes the weights to restore the gene expression profiles. We assessed the performance and efficiency of EAGS using simulated and high-resolved ST datasets of mouse brain and olfactory bulb.
Compared with other competitive methods, EAGS shows higher clustering accuracy, better biological interpretations, and significantly reduced computational consumption.
高分辨率空间转录组学(ST)的出现推动了研究生物发育、生物体生长及其他复杂生物过程新方法的研究。然而,高分辨率和全转录组ST数据集需要定制的插补方法来提高信噪比和数据质量。
我们提出了一种用于高分辨率ST的高效自适应高斯平滑(EAGS)插补方法。EAGS的自适应双因素平滑基于细胞的空间和表达信息创建模式,为同一模式中的细胞平滑创建自适应权重,然后利用这些权重恢复基因表达谱。我们使用小鼠脑和嗅球的模拟及高分辨率ST数据集评估了EAGS的性能和效率。
与其他竞争方法相比,EAGS显示出更高的聚类准确性、更好的生物学解释,且显著降低了计算消耗。