增强分割式癌症疗法:一种三蒽类光敏剂释放持久的光动力和发光效能。

Enhancing Fractionated Cancer Therapy: A Triple-Anthracene Photosensitizer Unleashes Long-Persistent Photodynamic and Luminous Efficacy.

机构信息

State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.

出版信息

J Am Chem Soc. 2024 Mar 6;146(9):6252-6265. doi: 10.1021/jacs.3c14387. Epub 2024 Feb 20.

Abstract

Conventional photodynamic therapy (PDT) is often limited in treating solid tumors due to hypoxic conditions that impede the generation of reactive oxygen species (ROS), which are critical for therapeutic efficacy. To address this issue, a fractionated PDT protocol has been suggested, wherein light irradiation is administered in stages separated by dark intervals to permit oxygen recovery during these breaks. However, the current photosensitizers used in fractionated PDT are incapable of sustaining ROS production during the dark intervals, leading to suboptimal therapeutic outcomes (Table S1). To circumvent this drawback, we have synthesized a novel photosensitizer based on a triple-anthracene derivative that is designed for prolonged ROS generation, even after the cessation of light exposure. Our study reveals a unique photodynamic action of these derivatives, facilitating the direct and effective disruption of biomolecules and significantly improving the efficacy of fractionated PDT (Table S2). Moreover, the existing photosensitizers lack imaging capabilities for monitoring, which constraints the fine-tuning of irradiation parameters (Table S1). Our triple-anthracene derivative also serves as an afterglow imaging agent, emitting sustained luminescence postirradiation. This imaging function allows for the precise optimization of intervals between PDT sessions and aids in determining the timing for subsequent irradiation, thus enabling meticulous control over therapy parameters. Utilizing our novel triple-anthracene photosensitizer, we have formulated a fractionated PDT regimen that effectively eliminates orthotopic pancreatic tumors. This investigation highlights the promise of employing long-persistent photodynamic activity in advanced fractionated PDT approaches to overcome the current limitations of PDT in solid tumor treatment.

摘要

传统的光动力疗法(PDT)常受到肿瘤乏氧的限制,因为乏氧会阻碍活性氧(ROS)的产生,而 ROS 对于治疗效果至关重要。为了解决这个问题,人们提出了一种分割 PDT 方案,即分阶段进行光照,在光照之间留出黑暗间隔,以允许在这些间隔期间恢复氧气。然而,目前在分割 PDT 中使用的光敏剂在黑暗间隔期间无法持续产生 ROS,导致治疗效果不理想(表 S1)。为了克服这一缺点,我们合成了一种基于三蒽衍生物的新型光敏剂,该光敏剂旨在延长 ROS 的产生,即使在停止光照后也是如此。我们的研究揭示了这些衍生物的独特光动力作用,能够直接有效地破坏生物分子,显著提高分割 PDT 的疗效(表 S2)。此外,现有的光敏剂缺乏用于监测的成像能力,这限制了照射参数的微调(表 S1)。我们的三蒽衍生物还可用作余晖成像剂,在照射后发出持续的发光。这种成像功能可以精确优化 PDT 治疗之间的间隔,并有助于确定后续照射的时机,从而实现对治疗参数的精细控制。我们利用新型三蒽光敏剂制定了一种分割 PDT 方案,能够有效地消除原位胰腺肿瘤。这项研究强调了在先进的分割 PDT 方法中利用长持续光动力活性来克服 PDT 在实体瘤治疗中的当前限制的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索