文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过定量实时磁粒子成像技术对运动中的细胞进行计数。

Counting cells in motion by quantitative real-time magnetic particle imaging.

机构信息

Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587, Berlin, Germany.

Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Charitéplatz 1, 10117, Berlin, Germany.

出版信息

Sci Rep. 2024 Feb 21;14(1):4253. doi: 10.1038/s41598-024-54784-5.


DOI:10.1038/s41598-024-54784-5
PMID:38378785
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10879211/
Abstract

Magnetic Particle Imaging (MPI) is an advanced and powerful imaging modality for visualization and quantitative real-time detection of magnetic nanoparticles (MNPs). This opens the possibility of tracking cells in vivo once they have been loaded by MNPs. Imaging modalities such as optical imaging, X-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI) face limitations, from depth of penetration and radiation exposure to resolution and quantification accuracy. MPI addresses these challenges, enabling radiation-free tracking of MNP-loaded cells with precise quantification. However, the real-time tracking of MNP-loaded cells with MPI has not been demonstrated yet. This study establishes real-time quantitative tracking of MNP-loaded cells. Therefore, THP-1 monocytes were loaded with three different MNP systems, including the MPI gold standard Resovist and Synomag. The real-time MPI experiments reveal different MPI resolution behaviors of the three MNP systems after cellular uptake. Real-time quantitative imaging was achieved by time-resolved cell number determination and comparison with the number of inserted cells. About 95% of the inserted cells were successfully tracked in a controlled phantom environment. These results underline the potential of MPI for real-time investigation of cell migration and interaction with tissue in vivo.

摘要

磁粒子成像(MPI)是一种用于可视化和实时定量检测磁性纳米粒子(MNPs)的先进且强大的成像方式。这为在 MNPs 加载后对细胞进行体内追踪提供了可能。光学成像、X 射线计算机断层扫描(CT)、正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)和磁共振成像(MRI)等成像方式存在着穿透深度、辐射暴露、分辨率和定量准确性等方面的限制。MPI 解决了这些挑战,实现了对 MNPs 负载细胞的无辐射追踪和精确定量。然而,MPI 对 MNPs 负载细胞的实时追踪尚未得到证实。本研究建立了 MNPs 负载细胞的实时定量追踪。因此,用三种不同的 MNPs 系统负载 THP-1 单核细胞,包括 MPI 的金标准 Resovist 和 Synomag。细胞摄取后,实时 MPI 实验揭示了三种 MNPs 系统的不同 MPI 分辨率行为。通过时间分辨细胞数量的确定和与插入细胞数量的比较,实现了实时定量成像。在受控的模拟环境中,约 95%的插入细胞被成功追踪。这些结果强调了 MPI 用于实时研究细胞迁移和与体内组织相互作用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/f3c98b7cc711/41598_2024_54784_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/2e38ae3814b7/41598_2024_54784_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/10c2a88615c6/41598_2024_54784_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/21aa3535279e/41598_2024_54784_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/00a0f6b58ba8/41598_2024_54784_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/fd82cb195901/41598_2024_54784_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/f65fd7bd7f4d/41598_2024_54784_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/f3c98b7cc711/41598_2024_54784_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/2e38ae3814b7/41598_2024_54784_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/10c2a88615c6/41598_2024_54784_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/21aa3535279e/41598_2024_54784_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/00a0f6b58ba8/41598_2024_54784_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/fd82cb195901/41598_2024_54784_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/f65fd7bd7f4d/41598_2024_54784_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7354/10879211/f3c98b7cc711/41598_2024_54784_Fig7_HTML.jpg

相似文献

[1]
Counting cells in motion by quantitative real-time magnetic particle imaging.

Sci Rep. 2024-2-21

[2]
Cell Tracking by Magnetic Particle Imaging: Methodology for Labeling THP-1 Monocytes with Magnetic Nanoparticles for Cellular Imaging.

Cells. 2022-9-16

[3]
Magnetic Nanoparticles in Macrophages and Cancer Cells Exhibit Different Signal Behavior on Magnetic Particle Imaging.

J Nanosci Nanotechnol. 2019-11-1

[4]
Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging.

Med Phys. 2011-3

[5]
Magnetic Particle Imaging: Current Applications in Biomedical Research.

J Magn Reson Imaging. 2020-6

[6]
Cellular uptake of magnetic nanoparticles imaged and quantified by magnetic particle imaging.

Sci Rep. 2020-2-5

[7]
Hybrid MPI-MRI System for Dual-Modal In Situ Cardiovascular Assessments of Real-Time 3D Blood Flow Quantification-A Pre-Clinical In Vivo Feasibility Investigation.

IEEE Trans Med Imaging. 2020-12

[8]
In vitro and in vivo comparison of a tailored magnetic particle imaging blood pool tracer with Resovist.

Phys Med Biol. 2017-5-7

[9]
A Novel Local Magnetic Fluid Hyperthermia Based on High Gradient Field Guided by Magnetic Particle Imaging.

IEEE Trans Biomed Eng. 2024-8

[10]
Improved Quantitative Analysis Method for Magnetic Particle Imaging Based on Deblurring and Region Scalable Fitting.

Mol Imaging Biol. 2023-8

引用本文的文献

[1]
Magnetic nanoparticles influence the biological function of mesenchymal stem cells.

Sci Rep. 2025-7-30

[2]
Advances in magnetic field approaches for non-invasive targeting neuromodulation.

Front Hum Neurosci. 2025-4-28

[3]
Development of Iron Oxide Nanochains as a Sensitive Magnetic Particle Imaging Tracer for Cancer Detection.

ACS Appl Mater Interfaces. 2025-4-9

[4]
Rapid cellular uptake of citrate-coated iron oxide nanoparticles unaffected by cell-surface glycosaminoglycans.

Nanoscale Adv. 2024-6-13

本文引用的文献

[1]
Determining the resolution of a tracer for magnetic particle imaging by means of magnetic particle spectroscopy.

RSC Adv. 2023-5-24

[2]
Complementary early-phase magnetic particle imaging and late-phase positron emission tomography reporter imaging of mesenchymal stem cells .

Nanoscale. 2023-2-16

[3]
Cell Tracking by Magnetic Particle Imaging: Methodology for Labeling THP-1 Monocytes with Magnetic Nanoparticles for Cellular Imaging.

Cells. 2022-9-16

[4]
Cell-based drug delivery systems and their in vivo fate.

Adv Drug Deliv Rev. 2022-8

[5]
Impact of Superparamagnetic Iron Oxide Nanoparticles on THP-1 Monocytes and Monocyte-Derived Macrophages.

Front Mol Biosci. 2022-2-4

[6]
Tailored Magnetic Multicore Nanoparticles for Use as Blood Pool MPI Tracers.

Nanomaterials (Basel). 2021-6-10

[7]
Artificially engineered antiferromagnetic nanoprobes for ultra-sensitive histopathological level magnetic resonance imaging.

Nat Commun. 2021-6-22

[8]
Long circulating tracer tailored for magnetic particle imaging.

Nanotheranostics. 2021

[9]
Pulmonary blood volume estimation in mice by magnetic particle imaging and magnetic resonance imaging.

Sci Rep. 2021-3-1

[10]
A Perspective on Cell Tracking with Magnetic Particle Imaging.

Tomography. 2020-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索