文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用磁粒子成像进行细胞示踪的观点。

A Perspective on Cell Tracking with Magnetic Particle Imaging.

机构信息

Imaging Research Laboratories, Robarts Research Institute; and.

Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.

出版信息

Tomography. 2020 Dec;6(4):315-324. doi: 10.18383/j.tom.2020.00043.


DOI:10.18383/j.tom.2020.00043
PMID:33364421
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7744191/
Abstract

Many labs have been developing cellular magnetic resonance imaging (MRI), using both superparamagnetic iron oxide nanoparticles (SPIONs) and fluorine-19 (F)-based cell labels, to track immune and stem cells used for cellular therapies. Although SPION-based MRI cell tracking has very high sensitivity for cell detection, SPIONs are indirectly detected owing to relaxation effects on protons, producing negative magnetic resonance contrast with low signal specificity. Therefore, it is not possible to reliably quantify the local tissue concentration of SPION particles, and cell number cannot be determined. F-based cell tracking has high specificity for perfluorocarbon-labeled cells, and F signal is directly related to cell number. However, F MRI has low sensitivity. Magnetic particle imaging (MPI) is a new imaging modality that directly detects SPIONs. SPION-based cell tracking using MPI displays great potential for overcoming the challenges of MRI-based cell tracking, allowing for both high cellular sensitivity and specificity, and quantification of SPION-labeled cell number. Here we describe nanoparticle and MPI system factors that influence MPI sensitivity and resolution, quantification methods, and give our perspective on testing and applying MPI for cell tracking.

摘要

许多实验室一直在开发细胞磁共振成像(MRI),使用超顺磁氧化铁纳米粒子(SPIONs)和氟-19(F)基细胞标签来跟踪用于细胞治疗的免疫细胞和干细胞。尽管基于 SPION 的 MRI 细胞跟踪对细胞检测具有非常高的灵敏度,但由于质子弛豫效应,SPIONs 是间接检测到的,产生具有低信号特异性的负磁共振对比。因此,无法可靠地量化 SPION 颗粒的局部组织浓度,也无法确定细胞数量。F 基细胞跟踪对全氟碳标记细胞具有高特异性,并且 F 信号与细胞数量直接相关。然而,F MRI 的灵敏度较低。磁性粒子成像(MPI)是一种直接检测 SPION 的新成像方式。基于 MPI 的 SPION 细胞跟踪显示出克服 MRI 细胞跟踪挑战的巨大潜力,允许高细胞灵敏度和特异性,以及量化 SPION 标记的细胞数量。在这里,我们描述了影响 MPI 灵敏度和分辨率的纳米粒子和 MPI 系统因素、量化方法,并对 MPI 用于细胞跟踪的测试和应用提出了我们的看法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebe/7744191/b14648354156/GP-TOMJ200055F005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebe/7744191/169ca95ed1f2/GP-TOMJ200055F001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebe/7744191/0ac04b0cd240/GP-TOMJ200055F002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebe/7744191/a3ea229199b9/GP-TOMJ200055F003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebe/7744191/7ed5bb3d23bd/GP-TOMJ200055F004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebe/7744191/b14648354156/GP-TOMJ200055F005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebe/7744191/169ca95ed1f2/GP-TOMJ200055F001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebe/7744191/0ac04b0cd240/GP-TOMJ200055F002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebe/7744191/a3ea229199b9/GP-TOMJ200055F003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebe/7744191/7ed5bb3d23bd/GP-TOMJ200055F004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebe/7744191/b14648354156/GP-TOMJ200055F005.jpg

相似文献

[1]
A Perspective on Cell Tracking with Magnetic Particle Imaging.

Tomography. 2020-12

[2]
Trimodal Cell Tracking In Vivo: Combining Iron- and Fluorine-Based Magnetic Resonance Imaging with Magnetic Particle Imaging to Monitor the Delivery of Mesenchymal Stem Cells and the Ensuing Inflammation.

Tomography. 2019-12

[3]
The sensitivity of magnetic particle imaging and fluorine-19 magnetic resonance imaging for cell tracking.

Sci Rep. 2021-11-12

[4]
Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications.

Adv Drug Deliv Rev. 2018-12-13

[5]
Application of magnetic particle imaging to evaluate nanoparticle fate in rodent joints.

J Control Release. 2023-4

[6]
Quantitative "Hot Spot" Imaging of Transplanted Stem Cells using Superparamagnetic Tracers and Magnetic Particle Imaging (MPI).

Tomography. 2015-12

[7]
Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance.

J Nanobiotechnology. 2020-1-28

[8]
Magnetic microspheres can be used for magnetic particle imaging of cancer cells arrested in the mouse brain.

Magn Reson Med. 2022-1

[9]
Magnetic particle imaging (MPI) for NMR and MRI researchers.

J Magn Reson. 2012-12-27

[10]
Janus Iron Oxides @ Semiconducting Polymer Nanoparticle Tracer for Cell Tracking by Magnetic Particle Imaging.

Nano Lett. 2017-12-15

引用本文的文献

[1]
Principles and applications of magnetic nanomaterials in magnetically guided bioimaging.

Mater Today Phys. 2023-3

[2]
Spillover can limit accurate signal quantification in MPI.

Npj Imaging. 2025-5-6

[3]
Long-term in vivo monitoring of transplanted mesenchymal stromal cells in colitis mice with magnetic particle imaging.

EBioMedicine. 2025-6

[4]
Development of Iron Oxide Nanochains as a Sensitive Magnetic Particle Imaging Tracer for Cancer Detection.

ACS Appl Mater Interfaces. 2025-4-9

[5]
A Physics-Based Computational Forward Model for Efficient Image Reconstruction in Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2025-5

[6]
A comprehensive analysis of the impacts of Image Resolution and Scanning Times on the quality of MPI-reconstructed images.

Sci Rep. 2025-2-14

[7]
MPI performance of magnetic nanoparticles depends on matrix composition and temperature: implications for MPI signal amplitude, spatial resolution, and tracer quantification.

Nanoscale Adv. 2025-1-15

[8]
Noninvasive in vivo imaging of macrophages: understanding tumor microenvironments and delivery of therapeutics.

Biomark Res. 2025-1-26

[9]
Utilization of nanomaterials in MRI contrast agents and their role in therapy guided by imaging.

Front Bioeng Biotechnol. 2024-11-19

[10]
High-efficiency magnetophoretic labelling of adoptively-transferred T cells for longitudinal Magnetic Particle Imaging.

Theranostics. 2024

本文引用的文献

[1]
Concept for using magnetic particle imaging for intraoperative margin analysis in breast-conserving surgery.

Sci Rep. 2021-6-29

[2]
Tracking adoptive T cell immunotherapy using magnetic particle imaging.

Nanotheranostics. 2021

[3]
Visualizing tumour self-homing with magnetic particle imaging.

Nanoscale. 2021-3-28

[4]
Complex Relationship Between Iron Oxide Nanoparticle Degradation and Signal Intensity in Magnetic Particle Imaging.

ACS Appl Nano Mater. 2020-5-22

[5]
Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications.

Theranostics. 2020

[6]
Artificially Engineered Cubic Iron Oxide Nanoparticle as a High-Performance Magnetic Particle Imaging Tracer for Stem Cell Tracking.

ACS Nano. 2020-2-5

[7]
Magnetic Particle Imaging of Macrophages Associated with Cancer: Filling the Voids Left by Iron-Based Magnetic Resonance Imaging.

Mol Imaging Biol. 2020-8

[8]
Trimodal Cell Tracking In Vivo: Combining Iron- and Fluorine-Based Magnetic Resonance Imaging with Magnetic Particle Imaging to Monitor the Delivery of Mesenchymal Stem Cells and the Ensuing Inflammation.

Tomography. 2019-12

[9]
Optimization of Drive Parameters for Resolution, Sensitivity and Safety in Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2020-5

[10]
Magnetic Particle Imaging: Current Applications in Biomedical Research.

J Magn Reson Imaging. 2020-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索